
Lecture 7: Guidelines for Investigating, cleaning, and creating
variables

Managing and Manipulating Data Using R

1 / 41

Introduction

2 / 41

What we will do today

1. Introduction

2. Exploratory data analysis (EDA)
2.1 Tools for EDA
2.2 Guidelines for EDA
2.3 Skip patterns in survey data

3. Problem Set 7

3 / 41

Libraries

“Load” the package we will use today (output omitted)
▶ you must run this code chunk after installing these packages

library(tidyverse)
library(haven)
library(labelled)

If package not yet installed, then must install before you load. Install in “console”
rather than .Rmd file

▶ Generic syntax: install.packages("package_name")
▶ Install “tidyverse”: install.packages("tidyverse")

Note: when we load package, name of package is not in quotes; but when we install
package, name of package is in quotes:

▶ install.packages("tidyverse")
▶ library(tidyverse)

4 / 41

Data

Use read_dta() function from haven to import Stata dataset into R
hsls <- read_dta(file="https://github.com/ozanj/rclass/raw/master/data/hsls/hsls_stu_small.dta")

Let’s examine the data [you must run this code chunk]
hsls %>% names()
hsls %>% names() %>% str()
hsls %>% names() %>% tolower() %>% str()

names(hsls) <- tolower(names(hsls)) # convert names to lowercase
names(hsls)

str(hsls) # ugh

str(hsls$s3classes)
attributes(hsls$s3classes)
typeof(hsls$s3classes)
class(hsls$s3classes)

Download the HSLS Codebook:
https://nces.ed.gov/pubs2014/2014361_AppendixI.pdf

5 / 41

https://nces.ed.gov/pubs2014/2014361_AppendixI.pdf

Exploratory data analysis (EDA)

6 / 41

What is exploratory data analysis (EDA)?

The Towards Data Science website has a nice definition of EDA:
“Exploratory Data Analysis refers to the critical process of performing initial
investigations on data so as to discover patterns,to spot anomalies,to test
hypothesis and to check assumptions with the help of summary statistics”

This course focuses on “data management”:
▶ investigating and cleaning data for the purpose of creating analysis variables
▶ Basically, everything that happens before you conduct analyses

I think about “exploratory data analysis for data quality”
▶ Investigating values and patterns of variables from “input data”
▶ Identifying and cleaning errors or values that need to be changed
▶ Creating analysis variables
▶ Checking values of analysis variables agains values of input variables

7 / 41

https://towardsdatascience.com/exploratory-data-analysis-8fc1cb20fd15

How we will teach exploratory data analysis

Will teach exploratory data analysis (EDA) in two sub-sections:
1. Introduce “Tools of EDA”:

▶ Demonstrate code to investigate variables and relatioship between variables
▶ Most of these tools are just the application of programming skills you have already

learned
2. Provide “Guidelines for EDA”

▶ Less about coding, more about practices you should follow and mentality necessary to
ensure high data quality

8 / 41

Tools for EDA

9 / 41

Tools of EDA

To do EDA for data quality, must master the following tools:

▶ Select, sort, filter, and print in order to see data patterns, anomolies
▶ Select and sort particular values of particular variables
▶ Print particular values of particular variables

▶ One-way descriptive analyses (i.e,. focus on one variable)
▶ Descriptive analyses for continuous variables
▶ Descriptive analyses for discreet/categorical variables

▶ Two-way descriptive analyses (relationship between two variables)
▶ Categorical by categorical
▶ Categorical by continuous
▶ Continuous by continuous

Whenever using any of these tools, pay close attention to missing values and how
they are coded

▶ Often, the “input” variables don’t code missing values as NA
▶ Especially when working with survey data, missing values coded as a negative

number (e.g., -9 , -8 , -4) with different negative values representing different
reasons for data being missing

▶ sometimes missing values coded as very high positive numbers
▶ Therefore, important to investigate input vars prior to creating analysis vars

10 / 41

Tools of EDA

First, Let’s create a smaller version of the HSLS:09 dataset
#hsls %>% var_label()
hsls_small <- hsls %>%

select(stu_id,x3univ1,x3sqstat,x4univ1,x4sqstat,s3classes,
s3work,s3focus,s3clgft,s3workft,s3clgid,s3clgcntrl,
s3clglvl,s3clgsel,s3clgstate,s3proglevel,x4evrappclg,
x4evratndclg,x4atndclg16fb,x4ps1sector,x4ps1level,
x4ps1ctrl,x4ps1select,x4refsector,x4reflevel,x4refctrl,
x4refselect, x2sex,x2race,x2paredu,x2txmtscor,x4x2ses,x4x2sesq5)

names(hsls_small)
hsls_small %>% var_label()

11 / 41

Tools of EDA: select, sort, filter, and print
We’ve already know select() , arrange() , filter()

Select, sort, and print specific vars
#sort and print
hsls_small %>% arrange(desc(stu_id)) %>%

select(stu_id,x3univ1,x3sqstat,s3classes,s3clglvl)

#investigate variable attributes
hsls_small %>% arrange(desc(stu_id)) %>%

select(stu_id,x3univ1,x3sqstat,s3classes,s3clglvl) %>% str()

#print observations with value labels rather than variable values
hsls_small %>% arrange(desc(stu_id)) %>%

select(stu_id,x3univ1,x3sqstat,s3classes,s3clglvl) %>% as_factor()

Sometimes helpful to increase the number of observations printed
class(hsls_small) #it's a tibble, which is the "tidyverse" version of a data frame
options(tibble.print_min=50)
execute this in console
hsls_small %>% arrange(desc(stu_id)) %>%

select(stu_id,x3univ1,x3sqstat,s3classes,s3clglvl)
options(tibble.print_min=10) # set default printing back to 10 lines

12 / 41

One-way descriptive stats for continuous vars, Base R approach [SKIP]

mean(hsls_small$x2txmtscor)
sd(hsls_small$x2txmtscor)

#Careful: summary stats include value of -8!
min(hsls_small$x2txmtscor)
max(hsls_small$x2txmtscor)

Be careful with NA values
#Create variable replacing -8 with NA
hsls_small_temp <- hsls_small %>%

mutate(x2txmtscorv2=ifelse(x2txmtscor==-8,NA,x2txmtscor))
hsls_small_temp %>% filter(is.na(x2txmtscorv2)) %>% count(x2txmtscorv2)

mean(hsls_small_temp$x2txmtscorv2)
mean(hsls_small_temp$x2txmtscorv2, na.rm=TRUE)
rm(hsls_small_temp)

13 / 41

One-way descriptive stats for continuous vars, Tidyverse approach

Use summarise_at() , a variation of summarise() , to make descriptive stats

▶ .args=list(na.rm=TRUE) = a named list of additional arguments to be added
to all function calls

Task:
▶ calculate descriptive stats for x2txmtscor , math test score

#?summarise_at
hsls_small %>% select(x2txmtscor) %>% var_label()
#> $x2txmtscor
#> [1] "X2 Mathematics standardized theta score"
hsls_small %>%

summarise_at(
.vars = vars(x2txmtscor),
.funs = funs(mean, sd, min, max, .args=list(na.rm=TRUE))

)
#> # A tibble: 1 x 4
#> mean sd min max
#> <dbl> <dbl> <dbl> <dbl>
#> 1 44.1 21.8 -8 84.9

14 / 41

One-way descriptive stats for continuous vars, Tidyverse approach
Can calculate descriptive stats for more than one variable at a time
Task:

▶ calculate descriptive stats for x2txmtscor , math test score, and x4x2ses ,
socioeconomic index score

hsls_small %>% select(x2txmtscor,x4x2ses) %>% var_label()
#> $x2txmtscor
#> [1] "X2 Mathematics standardized theta score"
#>
#> $x4x2ses
#> [1] "X4 Revised X2 Socio-economic status composite"

hsls_small %>%
summarise_at(

.vars = vars(x2txmtscor,x4x2ses),

.funs = funs(mean, sd, min, max, .args=list(na.rm=TRUE))
)

#> # A tibble: 1 x 8
#> x2txmtscor_mean x4x2ses_mean x2txmtscor_sd x4x2ses_sd x2txmtscor_min
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 44.1 -0.802 21.8 2.63 -8
#> # ... with 3 more variables: x4x2ses_min <dbl>, x2txmtscor_max <dbl>,
#> # x4x2ses_max <dbl>

15 / 41

One-way descriptive stats for continuous vars, Tidyverse approach
“Input vars” in survey data often have negative values for missing/skips
hsls_small %>% filter(x2txmtscor<0) %>% count(x2txmtscor)

R includes those negative values when calculating stats; you don’t want this
▶ Solution: create version of variable that replaces negative values with NA

hsls_small %>% mutate(x2txmtscor_na=ifelse(x2txmtscor<0,NA,x2txmtscor)) %>%
summarise_at(

.vars = vars(x2txmtscor_na),

.funs = funs(mean, sd, min, max, .args=list(na.rm=TRUE))
)

#> # A tibble: 1 x 4
#> mean sd min max
#> <dbl> <dbl> <dbl> <dbl>
#> 1 51.5 10.2 22.2 84.9

What if you didn’t include .args=list(na.rm=TRUE) ?
hsls_small %>% mutate(x2txmtscor_na=ifelse(x2txmtscor<0,NA,x2txmtscor)) %>%

summarise_at(
.vars = vars(x2txmtscor_na),
.funs = funs(mean, sd, min, max))

#> # A tibble: 1 x 4
#> mean sd min max
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA NA NA NA

16 / 41

One-way descriptive stats for continuous vars, Tidyverse approach
How to identify these missing/skip values if you don’t have a codebook?

▶ count() combined with filter() helpful for finding extreme values of
continuous vars, which are often associated with missing or skip

#variable x2txmtscor
hsls_small %>% filter(x2txmtscor<0) %>%

count(x2txmtscor)
#> # A tibble: 1 x 2
#> x2txmtscor n
#> <dbl> <int>
#> 1 -8 2909

#variable s3clglvl
hsls_small %>% select(s3clglvl) %>% var_label()
#> $s3clglvl
#> [1] "S3 Enrolled college IPEDS level"

hsls_small %>% filter(s3clglvl<0) %>%
count(s3clglvl)

#> # A tibble: 3 x 2
#> s3clglvl n
#> <dbl+lbl> <int>
#> 1 -9 [Missing] 487
#> 2 -8 [Unit non-response] 4945
#> 3 -7 [Item legitimate skip/NA] 5022

17 / 41

One-way descriptive stats student exercise

1. Using the object hsls , identify variable type, variable class, and check the
variable values and value labels of x4ps1start

▶ variable x4ps1start identifies month and year student first started postsecondary
education

▶ Note: This variable is a bit counterintuitive.
▶ e.g., the value 201105 refers to May 2011

2. Get a frequency count of the variable x4ps1start
3. Get a frequency count of the variable, but this time only observations that have

negative values hint: use filter()
4. Create a new version of the variable x4ps1start_na that replaces negative

values with NAs and use summarise_at() to get the min and max value.

18 / 41

One-way descriptive stats student exercise solutions
1. Using the object hsls , identify variable type, variable class, and check the

variable vakyes and value labels of x4ps1start

typeof(hsls$x4ps1start)
#> [1] "double"
class(hsls$x4ps1start)
#> [1] "haven_labelled" "vctrs_vctr" "double"

hsls %>% select(x4ps1start) %>% var_label()
#> $x4ps1start
#> [1] "X4 Month and year of enrollment at first postsecondary institution"

hsls %>% select(x4ps1start) %>% val_labels()
#> $x4ps1start
#> Missing
#> -9
#> Unit non-response
#> -8
#> Item legitimate skip/NA
#> -7
#> Component not applicable
#> -6
#> Item not administered: abbreviated interview
#> -4
#> Carry through missing
#> -3
#> Don't know
#> -1

19 / 41

One-way descriptive stats student exercise solutions

2. Get a frequency count of the variable x4ps1start

hsls %>%
count(x4ps1start)

#> # A tibble: 9 x 2
#> x4ps1start n
#> <dbl+lbl> <int>
#> 1 -9 [Missing] 107
#> 2 -8 [Unit non-response] 6168
#> 3 -7 [Item legitimate skip/NA] 4281
#> 4 201100 57
#> 5 201200 206
#> 6 201300 10800
#> 7 201400 1295
#> 8 201500 471
#> 9 201600 118

20 / 41

One-way descriptive stats student exercise solutions

3. Get a frequency count of the variable, but this time only observations that have
negative values hint: use filter()

hsls %>%
filter(x4ps1start<0) %>%
count(x4ps1start)

#> # A tibble: 3 x 2
#> x4ps1start n
#> <dbl+lbl> <int>
#> 1 -9 [Missing] 107
#> 2 -8 [Unit non-response] 6168
#> 3 -7 [Item legitimate skip/NA] 4281

21 / 41

One-way descriptive stats student exercise solutions

4. Create a new version x4ps1start_na of the variable x4ps1start that replaces
negative values with NAs and use summarise_at() to get the min and max
value.

hsls %>% mutate(x4ps1start_na=ifelse(x4ps1start<0,NA,x4ps1start)) %>%
summarise_at(

.vars = vars(x4ps1start_na),

.funs = funs(min, max, .args=list(na.rm=TRUE))
)

#> # A tibble: 1 x 2
#> min max
#> <dbl> <dbl>
#> 1 201100 201600

22 / 41

One-way descriptive stats for discrete/categorical vars, Tidyverse approach

Use count() to investigate values of discrete or categorical variables

For variables where class==labelled
class(hsls_small$s3classes)
attributes(hsls_small$s3classes)
#show counts of variable values
hsls_small %>% count(s3classes) #print in console to show both
#show counts of value labels
hsls_small %>% count(s3classes) %>% as_factor()

▶ I like count() because the default setting is to show NA values too!
hsls_small %>% mutate(s3classes_na=ifelse(s3classes<0,NA,s3classes)) %>%

count(s3classes_na)

Simultaneously show both values and value labels on count tables for
class==labelled if entered into console
▶ This requires some concepts/functions we haven’t introduced [SKIP]
hsls_small %>% count(s3classes)

y <- hsls_small %>% count(s3classes) %>% as_factor()
bind_cols(x[,1], y) #wont show in updated R

23 / 41

Relationship between variables, categorical by categorical

Two-way frequency table, called “cross tabulation”, important for data quality
▶ When you create categorical analysis var from single categorical “input” var

▶ Two-way tables show us whether we did this correctly
▶ Two-way tables helpful for understanding skip patterns in surveys

key to syntax

▶ df_name %>% group_by(var1) %>% count(var2) OR
▶ df_name %>% count(var1,var2)
▶ play around with which variable is var1 and which variable is var2

24 / 41

Relationship between variables, categorical by categorical
Task: Create a two-way table between s3classes and s3clglvl

▶ Investigate variables
hsls_small %>% select(s3classes,s3clglvl) %>% var_label()
hsls_small %>% select(s3classes,s3clglvl) %>% val_labels()

▶ Create two-way table
hsls_small %>% group_by(s3classes) %>% count(s3clglvl) # show values
hsls_small %>% count(s3classes,s3clglvl)
#hsls_small %>% group_by(s3classes) %>% count(s3clglvl) %>% as_factor() # show value labels

▶ Are these objects the same?
hsls_small %>% group_by(s3classes) %>% count(s3clglvl) %>% glimpse()
#> Rows: 8
#> Columns: 3
#> Groups: s3classes [5]
#> $ s3classes <dbl+lbl> -9, -8, 1, 1, 1, 1, 2, 3
#> $ s3clglvl <dbl+lbl> -9, -8, -9, 1, 2, 3, -7, -7
#> $ n <int> 59, 4945, 428, 8894, 3929, 226, 3401, 1621
hsls_small %>% count(s3classes,s3clglvl) %>% glimpse()
#> Rows: 8
#> Columns: 3
#> $ s3classes <dbl+lbl> -9, -8, 1, 1, 1, 1, 2, 3
#> $ s3clglvl <dbl+lbl> -9, -8, -9, 1, 2, 3, -7, -7
#> $ n <int> 59, 4945, 428, 8894, 3929, 226, 3401, 1621

25 / 41

Relationship between variables, categorical by categorical
Two-way frequency table, also called “cross tabulation”
Task:

▶ Create a version of s3classes called s3classes_na that changes negative
values to NA

▶ Create a two-way table between s3classes_na and s3clglvl

hsls_small %>%
mutate(s3classes_na=ifelse(s3classes<0,NA,s3classes)) %>%
group_by(s3classes_na) %>% count(s3clglvl)

hsls_small %>%
mutate(s3classes_na=ifelse(s3classes<0,NA,s3classes)) %>%
count(s3classes_na, s3clglvl)

#example where we create some NA obs in the second variable
hsls_small %>%

mutate(s3classes_na=ifelse(s3classes<0,NA,s3classes),
s3clglvl_na=ifelse(s3clglvl==-7,NA,s3clglvl)) %>%

group_by(s3classes_na) %>% count(s3clglvl_na)

hsls_small %>%
mutate(s3classes_na=ifelse(s3classes<0,NA,s3classes),

s3clglvl_na=ifelse(s3clglvl==-7,NA,s3clglvl)) %>%
count(s3classes_na, s3clglvl_na) 26 / 41

Relationship between variables, categorical by categorical [SKIP]

Tables above are pretty ugly

Use the spread() function from tidyr package to create table with one variable as
columns and the other variable as rows

▶ The variable you place in spread() will be columns
▶ We learn spread() function next week

hsls_small %>% group_by(s3classes) %>% count(s3clglvl) %>%
spread(s3classes, n)

hsls_small %>% group_by(s3classes) %>% count(s3clglvl) %>%
as_factor() %>% spread(s3classes, n)

hsls_small %>% group_by(s3classes) %>% count(s3clglvl) %>%
as_factor() %>% spread(s3clglvl, n)

27 / 41

Relationship between variables, categorical by continuous

Investigating relationship between multiple variables is a little tougher when at least
one of the variables is continuous
Conditional mean (like regression with continuous Y and one categorical X):

▶ Shows average values of continous variables within groups
▶ Groups are defined by your categorical variable(s)

key to syntax
▶

group_by(categorical_var) %>% summarise_at(.vars = vars(continuous_var)

28 / 41

Relationship between variables, categorical by continuous

Task
▶ Calculate mean math score, x2txmtscor , for each value of parental education,

x2paredu

#first, investigate parental education [print in console]
hsls_small %>% count(x2paredu)

using dplyr to get average math score by parental education level [print in console]
hsls_small %>% group_by(x2paredu) %>%

summarise_at(.vars = vars(x2txmtscor),
.funs = funs(mean, .args = list(na.rm = TRUE)))

#> # A tibble: 8 x 2
#> x2paredu x2txmtscor
#> <dbl+lbl> <dbl>
#> 1 -8 [Unit non-response] -8
#> 2 1 [Less than high school] 44.3
#> 3 2 [High school diploma or GED or alterntive HS credential] 47.2
#> 4 3 [Certificate/diploma from school providing occupational trainin~ 46.4
#> 5 4 [Associate's degree] 48.9
#> 6 5 [Bachelor's degree] 53.3
#> 7 6 [Master's degree] 55.6
#> 8 7 [Ph.D/M.D/Law/other high lvl prof degree] 58.9

29 / 41

Relationship between variables, categorical by continuous
Task

▶ Calculate mean math score, x2txmtscor , for each value of x2paredu

For checking data quality, helpful to calculate other stats besides mean
hsls_small %>% group_by(x2paredu) %>% #[print in console]

summarise_at(.vars = vars(x2txmtscor),
.funs = funs(mean, min, max, .args = list(na.rm = TRUE)))

Always Investigate presence of missing/skip values
hsls_small %>% filter(x2paredu<0) %>% count(x2paredu)
hsls_small %>% filter(x2txmtscor<0) %>% count(x2txmtscor)

Replace -8 with NA and re-calculate conditional stats
hsls_small %>%

mutate(x2paredu_na=ifelse(x2paredu<0,NA,x2paredu),
x2txmtscor_na=ifelse(x2txmtscor<0,NA,x2txmtscor)) %>%

group_by(x2paredu_na) %>%
summarise_at(.vars = vars(x2txmtscor_na),

.funs = funs(mean, min, max, .args = list(na.rm = TRUE))) %>%
as_factor()

#> Warning in min(x2txmtscor_na, na.rm = TRUE): no non-missing arguments to min;
#> returning Inf
#> Warning in max(x2txmtscor_na, na.rm = TRUE): no non-missing arguments to max;
#> returning -Inf

hsls_small %>% count(s3classes,s3clglvl) %>% as_factor 30 / 41

Student exercise

Can use same approach to calculate conditional mean by multiple group_by()
variables

▶ Just add additional variables within group_by()

1. Calculate mean math test score (x2txmtscor), for each combination of parental
education (x2paredu) and sex (x2sex).

31 / 41

Student exercise solution

1. Calculate mean math test score (x2txmtscor), for each combination of parental
education (x2paredu) and sex (x2sex)

#hsls_small %>% count(x2sex)

hsls_small %>%
group_by(x2paredu,x2sex) %>%
summarise_at(.vars = vars(x2txmtscor),

.funs = funs(mean, .args = list(na.rm = TRUE))) %>%
as_factor()

32 / 41

Guidelines for EDA

33 / 41

Guidelines for “EDA for data quality”

Assme that your goal in “EDA for data quality” is to investigate “input” data sources
and create “analysis variables”

▶ Usually, your analysis dataset will incorporate multiple sources of input data,
including data you collect (primary data) and/or data collected by others
(secondary data)

While this is not a linear process, these are the broad steps I follow
1. Understand how input data sources were created

▶ e.g., when working with survey data, have survey questionnaire and codebooks on hand
2. For each input data source, identify the “unit of analysis” and which combination

of variables uniquely identify observations
3. Investigate patterns in input variables
4. Create analysis variable from input variable(s)
5. Verify that analysis variable is created correctly through descriptive statistics that

compare values of input variable(s) against values of the analysis variable
Always be aware of missing values

▶ They will not always be coded as NA in input variables

34 / 41

“Unit of analysis” and which variables uniquely identify observations

“Unit of analysis” refers to “what does each observation represent” in an input data
source

▶ If each obs represents a student, you have “student level data”
▶ If each obs represents a student-course, you have “student-course level data”
▶ If each obs represents a school, you have “school-level data”
▶ If each obs represents a school-year, you have “school-year level data”

How to identify unit of analysis
▶ data documentation
▶ investigating the data set

We will go over syntax for identifying unit of analysis in subsequent weeks

35 / 41

Rules for variable creation

Rules I follow for variable creation

1. Never modify “input variable”; instead create new variable based on input
variable(s)

▶ Always keep input variables used to create new variables
2. Investigate input variable(s) and relationship between input variables
3. Developing a plan for creation of analysis variable

▶ e.g., for each possible value of input variables, what should value of analysis variable be?
4. Write code to create analysis variable
5. Run descriptive checks to verify new variables are constructed correctly

▶ Can “comment out” these checks, but don’t delete them
6. Document new variables with notes and labels

36 / 41

Rules for variable creation

Task:
▶ Create analysis for variable ses qunitile called sesq5 based on x4x2sesq5 that

converts negative values to NAs
#investigate input variable
hsls_small %>% select(x4x2sesq5) %>% var_label()
hsls_small %>% select(x4x2sesq5) %>% val_labels()
hsls_small %>% select(x4x2sesq5) %>% count(x4x2sesq5)
hsls_small %>% select(x4x2sesq5) %>% count(x4x2sesq5) %>% as_factor()

#create analysis variable
hsls_small_temp <- hsls_small %>%

mutate(sesq5=ifelse(x4x2sesq5==-8,NA,x4x2sesq5)) # approach 1
hsls_small_temp <- hsls_small %>%

mutate(sesq5=ifelse(x4x2sesq5<0,NA,x4x2sesq5)) # approach 2

#verify
hsls_small_temp %>% group_by(x4x2sesq5) %>% count(sesq5)

37 / 41

Skip patterns in survey data

38 / 41

What are skip patterns

Pretty easy to create an analysis variable based on a single input variable
Harder to create analysis variables based on multiple input variables

▶ When working with survey data, even seemingly simple analysis variables require
multiple input variables due to “skip patterns”

What are “skip patterns”?
▶ Response on a particular survey item determines whether respondent answers

some set of subsequent questions
▶ What are some examples of this?

Key to working with skip patterns
▶ Have the survey questionnaire on hand
▶ Sometimes it appears that analysis variable requires only one input variable, but

really depends on several input variables because of skip patterns
▶ Don’t just blindly turn “missing” and “skips” from survey data to NAs in your analysis

variable
▶ Rather, trace why these “missing” and “skips” appear and decide how they should be

coded in your analysis variable

39 / 41

Problem Set 7

40 / 41

Overview of problem set due next week
Assignment:

▶ create GPA from postsecondary transcript student-course level data
Data source: National Longitudinal Study of 1972 (NLS72)

▶ Follows 12th graders from 1972
▶ Base year: 1972
▶ Follow-up surveys in: 1973, 1974, 1976, 1979, 1986
▶ Postsecondary transcripts collected in 1984

Why use such an old survey for this assignment?
▶ NLS72 predates data privacy agreements; transcript data publicly available

What we do to make assignment more manageable
▶ last week’s problem set created the input var: numgrade
▶ we give you some hints/guidelines
▶ but you are responsible for developing plan to create GPA vars and for executing

plan (rather than us giving you step-by-step quations)
Why this assignment?

1. Give you more practice investigating data, cleaning data, creating variables that
require processing across rows

2. Real world example of “simple” task with complex data management needs
–>

41 / 41

https://nces.ed.gov/surveys/nls72/

	Introduction
	Exploratory data analysis (EDA)
	Tools for EDA
	Guidelines for EDA
	Skip patterns in survey data

	Problem Set 7

