
Lecture 6: Augmented vectors, Factor + Labelled Variables

1 / 58

Introduction

2 / 58

Logistics

Reading to do before next class:
▶ GW 15.1 - 15.2 (factors) [this is like 2-3 pages]
▶ [OPTIONAL] GW 15.3 - 15.5 (remainder of “factors” chapter)
▶ [OPTIONAL] GW 20.6 - 20.7 (attributes and augmented vectors)
▶ [OPTIONAL] GW 10 (tibbles)

3 / 58

What we will do today

1. Introduction

2. Augmented vectors
2.1 Review data types and structures
2.2 Attributes and augmented vectors
2.3 Object class
2.4 Class == factor
2.5 Class == labelled
2.6 Comparing labelled class to factor class

3. Creating factor variables

4 / 58

Libraries we will use today

“Load” the package we will use today (output omitted)
▶ you must run this code chunk after installing these packages

library(tidyverse)
library(haven)
library(labelled)
library(lubridate)

If package not yet installed, then must install before you load. Install in “console”
rather than .Rmd file

▶ Generic syntax: install.packages("package_name")
▶ Install “tidyverse”: install.packages("tidyverse")

Note: when we load package, name of package is not in quotes; but when we install
package, name of package is in quotes:

▶ install.packages("tidyverse")
▶ library(tidyverse)

5 / 58

Augmented vectors

6 / 58

Data we will use to introduce augmented vectors

rm(list = ls()) # remove all objects

#load("../../data/prospect_list/western_washington_college_board_list.RData")
load(url("https://github.com/ozanj/rclass/raw/master/data/prospect_list/wwlist_merged.RData"))

7 / 58

Review data types and structures

8 / 58

Vectors are the primary data structures in R

Two types of vectors:
1. atomic vectors
2. lists

Figure 1: Overview of data structures (Grolemund and Wickham, 2018)

9 / 58

Review data structures: atomic vectors
An atomic vector is a collection of values

▶ each value in an atomic vector is an element
▶ all elements within vector must have same data type

(a <- c(1,2,3)) # parentheses () assign and print object in one step
#> [1] 1 2 3
length(a)
#> [1] 3
typeof(a)
#> [1] "double"
str(a)
#> num [1:3] 1 2 3

Can assign names to vector elements, creating a named atomic vector
(b <- c(v1=1,v2=2,v3=3))
#> v1 v2 v3
#> 1 2 3
length(b)
#> [1] 3
typeof(b)
#> [1] "double"
str(b)
#> Named num [1:3] 1 2 3
#> - attr(*, "names")= chr [1:3] "v1" "v2" "v3"

10 / 58

Review data structures: lists
▶ Like atomic vectors, lists are objects that contain elements
▶ However, data type can differ across elements within a list

▶ an element of a list can be another list
list_a <- list(1,2,"apple")
typeof(list_a)
#> [1] "list"
length(list_a)
#> [1] 3
str(list_a)
#> List of 3
#> $: num 1
#> $: num 2
#> $: chr "apple"

list_b <- list(1, c("apple", "orange"), list(1, 2))
length(list_b)
#> [1] 3
str(list_b)
#> List of 3
#> $: num 1
#> $: chr [1:2] "apple" "orange"
#> $:List of 2
#> ..$: num 1
#> ..$: num 2

11 / 58

Review data structures: lists

Like atomic vectors, elements within a list can be named, thereby creating a named list
not named
str(list_b)
#> List of 3
#> $: num 1
#> $: chr [1:2] "apple" "orange"
#> $:List of 2
#> ..$: num 1
#> ..$: num 2

named
list_c <- list(v1=1, v2=c("apple", "orange"), v3=list(1, 2, 3))
str(list_c)
#> List of 3
#> $ v1: num 1
#> $ v2: chr [1:2] "apple" "orange"
#> $ v3:List of 3
#> ..$: num 1
#> ..$: num 2
#> ..$: num 3

12 / 58

Review data structures: a data frame is a list
A data frame is a list with the following characteristics:

▶ All the elements must be vectors with the same length
▶ Data frames are augmented lists because they have additional attributes

[described later]
#a regular list
list_d <- list(col_a = c(1,2,3), col_b = c(4,5,6), col_c = c(7,8,9))
typeof(list_d)
#> [1] "list"
str(list_d)
#> List of 3
#> $ col_a: num [1:3] 1 2 3
#> $ col_b: num [1:3] 4 5 6
#> $ col_c: num [1:3] 7 8 9

#a data frame
df_a <- data.frame(col_a = c(1,2,3), col_b = c(4,5,6), col_c = c(7,8,9))
typeof(df_a)
#> [1] "list"
str(df_a)
#> 'data.frame': 3 obs. of 3 variables:
#> $ col_a: num 1 2 3
#> $ col_b: num 4 5 6
#> $ col_c: num 7 8 9

13 / 58

Attributes and augmented vectors

14 / 58

Atomic vectors versus augmented vectors

Atomic vectors [our focus so far]
▶ I think of atomic vectors as “just the data”
▶ Atomic vectors are the building blocks for augmented vectors

Augmented vectors
▶ Augmented vectors are atomic vectors with additional attributes attached

Attributes
▶ Attributes are additional “metadata” that can be attached to any object (e.g.,

vector or list)
▶ Examples of some important attributes in R:

▶ Names: name the elements of a vector (e.g., variable names)
▶ value labels: character labels (e.g., “Charter School”) attached to numeric values
▶ Object class: How object should be treated by object oriented programming language

[discussed below]

Main takaway:
▶ Augmented vectors are atomic vectors (just the data) with additional attributes

attached

15 / 58

Attributes in vectors

Identify attributes in any object using the attributes() function
#vector with no attributes
vector1 <- c(1,2,3,4)
vector1
#> [1] 1 2 3 4
attributes(vector1)
#> NULL

#vector with name attributes
vector2 <- c(a = 1, b= 2, c= 3, d = 4)
vector2
#> a b c d
#> 1 2 3 4
attributes(vector2)
#> $names
#> [1] "a" "b" "c" "d"

16 / 58

Attributes in lists
#no attributes
list1 <- list(c(1,2,3), c(4,5,6))
attributes(list1)
#> NULL

#list with attributes
list2 <- list(col_a = c(1,2,3), col_b = c(4,5,6))
str(list2)
#> List of 2
#> $ col_a: num [1:3] 1 2 3
#> $ col_b: num [1:3] 4 5 6
attributes(list2)
#> $names
#> [1] "col_a" "col_b"

#data frame with attributes
list3 <- data.frame(col_a = c(1,2,3), col_b = c(4,5,6))
str(list3)
#> 'data.frame': 3 obs. of 2 variables:
#> $ col_a: num 1 2 3
#> $ col_b: num 4 5 6
attributes(list3)
#> $names
#> [1] "col_a" "col_b"
#>
#> $class
#> [1] "data.frame"
#>
#> $row.names
#> [1] 1 2 3

17 / 58

Object class

18 / 58

Object class
Every object in R has a class

▶ Object class defines rules for how object can be treated by object oriented
programming language (e.g., which functions you can apply to object)

▶ class is an attribute of an object

Identify the class of an object using the class() function
(vector2 <- c(a = 1, b= 2, c= 3, d = 4))
#> a b c d
#> 1 2 3 4
class(vector2)
#> [1] "numeric"

When I encounter a new object I often investigate object by applying typeof() ,
class() , and attributes() functions to that object

vector2
#> a b c d
#> 1 2 3 4
typeof(vector2)
#> [1] "double"
class(vector2)
#> [1] "numeric"
attributes(vector2)
#> $names
#> [1] "a" "b" "c" "d"

19 / 58

Object class

Why is class important?
▶ Specific functions usually work with only particular classes of objects

▶ e.g., “date”” functions usually only work on objects with a date class
▶ “string” functions usually only work with on objects with a character class
▶ Functions that do mathematical computation usually work on objects with a numeric

class
▶ Note: functions care about object class, not object type

object with numeric class (output omitted)
str(wwlist)

typeof(wwlist$med_inc_zip)
class(wwlist$med_inc_zip)
sum(wwlist$med_inc_zip[1:10], na.rm = TRUE) # numeric function

load library with date functions
library(lubridate)
#Sys.setenv(TZ="America/Los_Angeles") #setting time zone to Los Angeles time
year(wwlist$med_inc_zip[1:10]) # date function

20 / 58

Object class

Why is class important?
▶ Specific functions usually work with only particular classes of objects
▶ Note: functions care about object class, not object type

Object with character class
str(wwlist$hs_city)
typeof(wwlist$hs_city)
class(wwlist$hs_city)

tolower(wwlist$hs_city[1:10]) # string function
sum(wwlist$hs_city, na.rm = TRUE) # numeric function

Object with a date class
typeof(wwlist$receive_date)
class(wwlist$receive_date)

year(wwlist$receive_date[1:10]) # date function
sum(wwlist$receive_date) # numeric function

21 / 58

Class and object oriented programming

Definition of object oriented programming from this LINK
“Object-oriented programming (OOP) refers to a type of computer program-
ming in which programmers define not only the data type of a data structure,
but also the types of operations (functions) that can be applied to the data
structure.”

Object class is fundamental to object oriented programming because:
▶ object class determines which functions can be applied to the object
▶ object class also determines what those functions do to the object

Many different object classes exist in R
▶ we can also create our own classes
▶ but in this course we will work with classes that have been created by others

22 / 58

https://www.webopedia.com/TERM/O/object_oriented_programming_OOP.html

Class == factor

23 / 58

Factors

Factors are an object class used to display categorical data (e.g., marital status)
▶ A factor is an augmented vector built by attaching a “levels” attribute to an

(atomic) integer vectors
Usually, we would prefer a categorical variable (e.g., race, school type) to be a factor
variable rather than a character variable

▶ So far in the course I have made all categorical variables character variables
because we had not introduced factors yet

Below, I’ll create a factor version of the character variable ethn_code

▶ (don’t worry about understanding this code; I’ll explain it later)
str(wwlist$ethn_code)
#> chr [1:268396] "other-2 or more" "white" "white" "other-2 or more" "white" ...
class(wwlist$ethn_code)
#> [1] "character"
create factor var; tidyverse approach
wwlist <- wwlist %>% mutate(ethn_code_fac = factor(ethn_code))
#wwlist$ethn_code_fac <- factor(wwlist$ethn_code) # base r approach

str(wwlist$ethn_code_fac)
#> Factor w/ 10 levels "american indian or alaska native",..: 8 10 10 8 10 8 8 8 8 10 ...

24 / 58

Factors
A factor is an augmented vector built by attaching a “levels” attribute to an (atomic)
integer vector
Compare (character) ethn_code to (factor) ethn_code_fac (output omitted)
#character var
typeof(wwlist$ethn_code)
class(wwlist$ethn_code)
str(wwlist$ethn_code)
attributes(wwlist$ethn_code)

#factor var
typeof(wwlist$ethn_code_fac)
class(wwlist$ethn_code_fac)
str(wwlist$ethn_code_fac)
attributes(wwlist$ethn_code_fac)

Main takeaway
▶ ethn_code_fac has type=integer and class=factor because the variable

has a “levels” attribute
▶ Underlying data are integers but levels attribute is used to display the data.

wwlist$ethn_code_fac[1:4] # print first few obs of ethn_code_fac
#> [1] other-2 or more white white other-2 or more
#> 10 Levels: american indian or alaska native ...

25 / 58

Working with factor variables

attributes(wwlist$ethn_code_fac)

Refer to categories of a factor by the values of the level attribute rather than the
underlying values of the variable
Task

▶ count the number of prospects in object wwlist who identify as “white”
referring to variable value; this doesn't work
wwlist %>% filter(ethn_code_fac==10) %>% count
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 0

#referring to value of level attribute; this works
wwlist %>% filter(ethn_code_fac=="white") %>% count
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 159680

26 / 58

Working with factor variables
Task

▶ count the number of prospects in object wwlist who identify as “white”

If you want to refer to underlying values, then apply as.integer() function to the
factor variable
attributes(wwlist$ethn_code_fac)
#> $levels
#> [1] "american indian or alaska native"
#> [2] "asian or native hawaiian or other pacific islander"
#> [3] "black or african american"
#> [4] "cuban"
#> [5] "mexican/mexican american"
#> [6] "not reported"
#> [7] "other spanish/hispanic"
#> [8] "other-2 or more"
#> [9] "puerto rican"
#> [10] "white"
#>
#> $class
#> [1] "factor"
wwlist %>% filter(as.integer(ethn_code_fac)==10) %>% count
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 159680

27 / 58

How to identify the variable values associated with factor levels
Let’s create a factor version of the character variable psat_range

wwlist <- wwlist %>% mutate(psat_range_fac = factor(psat_range)) # create factor var;

Run below code in console rather than code chunk to see values associated with each
factor
wwlist %>% count(psat_range_fac)
attributes(wwlist$psat_range_fac)
levels(wwlist$psat_range_fac) #starts at 1
nlevels(wwlist$psat_range_fac) #7 levels total
levels(wwlist$psat_range_fac)[5] #prints levels 1-3

Once you know values associated with factor, you can filter based on values
wwlist %>% filter(as.integer(psat_range_fac)==4 | as.integer(psat_range_fac)==5) %>% count()
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 25735

Or you can just filter based on value of factor levels
wwlist %>% filter(psat_range=="1270-1520") %>% count()
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 8348

28 / 58

Creating factor variables from character variables or from integer variables

See Appendix

29 / 58

Factor student exercise
1. After running the code below, use typeof , class , str , and attributes

functions to check the new variable receive_year
2. Create a factor variable from the input variable receive_year and name it

receive_year_fac
3. Run the same functions (typeof , class , etc.) from the first question using the

new variable you created
4. Get a count of receive_year_fac . hint: you could also run this in the console

to see values associated with each factor
Run this code to create a year variable from the input variable “receive_date”
#wwlist %>% glimpse()

library(lubridate) #load library if you haven't already
wwlist <- wwlist %>%

mutate(receive_year = year(receive_date)) #creating year variable with the lubridate package

#Check variable
wwlist %>%

count(receive_year)

wwlist %>%
group_by(receive_year) %>%
count(receive_date)

30 / 58

Factor student exercise solutions

1. Use typeof , class , str , and attributes functions to check the new
variable receive_year

typeof(wwlist$receive_year)
#> [1] "double"
class(wwlist$receive_year)
#> [1] "numeric"
str(wwlist$receive_year)
#> num [1:268396] 2016 2016 2016 2016 2016 ...
attributes(wwlist$receive_year)
#> NULL

31 / 58

Factor student exercise solutions

2. Now create a factor variable from the input variable receive_year and name it
receive_year_fac

create factor var; tidyverse approach
wwlist <- wwlist %>%

mutate(receive_year_fac = factor(receive_year))

32 / 58

Factor student exercise solutions

3. Run the same functions (typeof , class , etc.) from the first question using the
new variable you created

typeof(wwlist$receive_year_fac)
#> [1] "integer"
class(wwlist$receive_year_fac)
#> [1] "factor"
str(wwlist$receive_year_fac)
#> Factor w/ 3 levels "2016","2017",..: 1 1 1 1 1 1 1 1 1 1 ...
attributes(wwlist$receive_year_fac)
#> $levels
#> [1] "2016" "2017" "2018"
#>
#> $class
#> [1] "factor"

33 / 58

Factor student exercise solutions

4. Get a count of receive_year_fac . hint: you could also run this in the console
to see values associated with each factor

wwlist %>%
count(receive_year_fac)

#> # A tibble: 3 x 2
#> receive_year_fac n
#> <fct> <int>
#> 1 2016 89637
#> 2 2017 89816
#> 3 2018 88943

34 / 58

Class == labelled

35 / 58

Data we will use to introduce labelled class

High school longitudinal surveys from National Center for Education Statistics (NCES)
▶ Follow U.S. students from high school through college, labor market

We will be working with High School Longitudinal Study of 2009 (HSLS:09)
▶ Follows 9th graders from 2009
▶ Data collection waves

- Base Year (2009)
- First Follow-up (2012)
- 2013 Update (2013)
- High School Transcripts (2013-2014)
- Second Follow-up (2016)

36 / 58

https://nces.ed.gov/surveys/hsls09/index.asp

haven package

haven , which is part of tidyverse, “enables R to read and write various data formats”
from the following statistical packages:

▶ SAS
▶ SPSS
▶ Stata

When using haven to read data, resulting R objects have these characteristics:
▶ Are tibbles, a particular type of data frame we discuss in future weeks
▶ Transform variables with “value labels” into the labelled() class [our focus

today]
▶ labelled is an object class created by folks who created haven package
▶ labelled is an object class, just like factor is an object class
▶ labelled and factor classes are both viable alternatives for categorical variables
▶ Helpful description of labelled class HERE

▶ Dates and times converted to R date/time classes
▶ Character vectors not converted to factors

37 / 58

https://haven.tidyverse.org/
https://haven.tidyverse.org/articles/semantics.html

haven package

Use read_dta() function from haven to import Stata dataset into R
hsls <- read_dta(file="https://github.com/ozanj/rclass/raw/master/data/hsls/hsls_stu_small.dta")

Let’s examine the data [you must run this code chunk]
names(hsls)
names(hsls) <- tolower(names(hsls)) # convert names to lowercase
names(hsls)

str(hsls) # ugh

str(hsls$s3classes)
attributes(hsls$s3classes)
typeof(hsls$s3classes)
class(hsls$s3classes)

38 / 58

labelled package

Purpose of the labelled package is to work with data imported from
SPSS/Stata/SAS using the haven package.

▶ In particular, labelled package creates functions to work with objects that have
labelled class

▶ From package documentation: ”purpose of the labelled package is to provide
functions to manipulate metadata as variable labels, value labels and defined
missing values using the labelled class and the label attribute introduced in
haven package.

▶ More info on the labelled package: LINK

Functions in labelled package
▶ Full list
▶ A couple relevant functions

▶ val_labels : get or set variable value labels
▶ var_label : get or set a variable label

attributes(hsls$s3classes)

hsls %>% select(s3classes) %>% var_label()
hsls %>% select(s3classes) %>% val_labels()

39 / 58

https://cran.r-project.org/web/packages/labelled/vignettes/intro_labelled.html
https://www.rdocumentation.org/packages/labelled/versions/1.1.0

What is labelled class?

▶ labelled is an object class created by the haven package for importing
variables from SAS/SPSS/Stata that have value labels

▶ value labels [in Stata] are labels attached to specific values of a variable:
▶ e.g., variable value 1 attached to value label “married”, 2 =“single”, 3 =“divorced”

▶ Variables in an R data frame with class==labelled :
▶ data type can be numeric(double) or character
▶ To see value labels associated with each value:

▶ attr(data_frame_name$variable_name,"labels")
▶ e.g., attr(hsls$s3classes,"labels")

Let’s investigate the attributes of hsls$s3classes
typeof(hsls$s3classes)
class(hsls$s3classes)
str(hsls$s3classes)
attributes(hsls$s3classes)

use attr(object_name,"attribute_name") to refer to each attribute
attr(hsls$s3classes,"label")
attr(hsls$s3classes,"labels")
attr(hsls$s3classes,"class")
attr(hsls$s3classes,"format.stata")

40 / 58

Working with labelled class data

Show variable labels (var_label); and show value labels (val_labels)
hsls %>% select(s3classes,s3clglvl) %>% var_label #show variable label
hsls %>% select(s3classes,s3clglvl) %>% val_labels #show value labels

Create frequency tables with labelled class variables using count()

▶ Default setting is to show variable values not value labels
hsls %>% count(s3classes)
#investigate the object created
hsls_freq_temp <- hsls %>% count(s3classes)
hsls_freq_temp
rm(hsls_freq_temp)

To make frequency table show value labels add %>% as_factor() to pipe

▶ as_factor() is function from haven that converts an object to a factor
hsls %>% count(s3classes) %>% as_factor()
#investigate the object created
hsls_freq_temp <- hsls %>% count(s3classes) %>% as_factor()
hsls_freq_temp
rm(hsls_freq_temp)

41 / 58

Working with labelled class data

To isolate values of labelled class variables in filter() function:
▶ refer to variable value, not the value label

Task
▶ how many observations in var s3classes associated with “Unit non-response”
▶ how many observations in var s3classes associated with “Yes”

General steps to follow:
1. investigate object
2. use filter to isolate desired observations

Investigate object
class(hsls$s3classes)
hsls %>% select(s3classes,s3clglvl) %>% var_label #show variable label
hsls %>% select(s3classes,s3clglvl) %>% val_labels #show value label
hsls %>% count(s3classes) # freq table, values
hsls %>% count(s3classes) %>% as_factor() # freq table, value labels

filter specific values
hsls %>% filter(s3classes==-8) %>% count() # -8 = unit non-response
hsls %>% filter(s3classes==1) %>% count() # 1 = yes

42 / 58

Labelled student exercise

1. Get variable and value labels of s3hs
2. Get a count of the variable showing the values and the value labels. hint use

factor()
3. Filter if value is associated with “Missing”
4. Filter if value is associated with “Missing” or “Unit non-response”

43 / 58

Labelled student exercise solutions
1. Get variable and value labels of s3hs

hsls %>%
select(s3hs) %>%
var_label()

#> $s3hs
#> [1] "S3 B01F Attending high school or homeschool as of Nov 1 2013"

hsls %>%
select(s3hs) %>%
val_labels()

#> $s3hs
#> Missing
#> -9
#> Unit non-response
#> -8
#> Item legitimate skip/NA
#> -7
#> Component not applicable
#> -6
#> Item not administered: abbreviated interview
#> -4
#> Yes
#> 1
#> No
#> 2
#> Don't know
#> 3

44 / 58

Labelled student exercise solutions
2. Get a count of the variable s3hs showing the value labels. hint use factor()

hsls %>%
count(s3hs)

#> # A tibble: 6 x 2
#> s3hs n
#> <dbl+lbl> <int>
#> 1 -9 [Missing] 22
#> 2 -8 [Unit non-response] 4945
#> 3 -7 [Item legitimate skip/NA] 16770
#> 4 1 [Yes] 624
#> 5 2 [No] 985
#> 6 3 [Don't know] 157

hsls %>%
count(s3hs) %>%
as_factor()

#> # A tibble: 6 x 2
#> s3hs n
#> <fct> <int>
#> 1 Missing 22
#> 2 Unit non-response 4945
#> 3 Item legitimate skip/NA 16770
#> 4 Yes 624
#> 5 No 985
#> 6 Don't know 157

45 / 58

Labelled student exercise solutions

3. Filter if value is associated with “Missing”
hsls %>%

filter(s3hs== -9) %>%
count()

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 22

46 / 58

Labelled student exercise solutions

4. Filter if value is associated with “Missing” or “Unit non-response”
hsls %>%

filter(s3hs== -9 | s3hs== -8) %>%
count()

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 4967

47 / 58

Comparing labelled class to factor class

48 / 58

Comparing class==labelled to class==factor

class==labelled class==factor

data type numeric or character integer
name of value label attribute labels levels
refer to data using variable values levels attribute

49 / 58

Converting class==labelled to class==factor

The as_factor() function from haven package converts variables with
class==labelled to class==factor
▶ Can be used for descriptive statistics

hsls %>% select(s3classes) %>% count(s3classes) %>% as_factor()

▶ Can create object with some or all labelled vars converted to factor
hsls_f <- as_factor(hsls,only_labelled = TRUE)

Let’s examine this object
glimpse(hsls_f)
hsls_f %>% select(s3classes,s3clglvl) %>% str()
typeof(hsls_f$s3classes)
class(hsls_f$s3classes)
attributes(hsls_f$s3classes)

hsls_f %>% select(s3classes) %>% var_label()
hsls_f %>% select(s3classes) %>% val_labels()

50 / 58

Working with class==factor data

Showing values associated with factor levels
hsls_f %>% count(s3classes)
#> # A tibble: 5 x 2
#> s3classes n
#> <fct> <int>
#> 1 Missing 59
#> 2 Unit non-response 4945
#> 3 Yes 13477
#> 4 No 3401
#> 5 Don't know 1621

In code, refer level attribute not variable value
hsls_f %>% filter(s3classes=="Yes") %>% count(s3classes)
#> # A tibble: 1 x 2
#> s3classes n
#> <fct> <int>
#> 1 Yes 13477

51 / 58

Creating factor variables

52 / 58

Create factors [from string variables]
To create a factor variable from string variable

1. create a character vector containing underlying data
2. create a vector containing valid levels
3. Attach levels to the data using the factor() function

#underlying data: months my fam is born
x1 <- c("Jan", "Aug", "Apr", "Mar")
#create vector with valid levels
month_levels <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
#attach levels to data
x2 <- factor(x1, levels = month_levels)

Note how attributes differ
str(x1)
#> chr [1:4] "Jan" "Aug" "Apr" "Mar"
str(x2)
#> Factor w/ 12 levels "Jan","Feb","Mar",..: 1 8 4 3

Sorting differs
sort(x1)
#> [1] "Apr" "Aug" "Jan" "Mar"
sort(x2)
#> [1] Jan Mar Apr Aug
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

53 / 58

Create factors [from string variables]
Let’s create a character version of variable hs_state and then turn it into a factor
#wwlist %>%
count(hs_state)
#Subset obs to West Coast states
wwlist_temp <- wwlist %>%

filter(hs_state %in% c("CA", "OR", "WA"))

#Create character version of high school state for West Coast states only
wwlist_temp$hs_state_char <- as.character(wwlist_temp$hs_state)

#investigate character variable
str(wwlist_temp$hs_state_char)
class(wwlist_temp$hs_state_char)
table(wwlist_temp$hs_state_char)

#create new variable that assigns levels
wwlist_temp$hs_state_fac <- factor(wwlist_temp$hs_state_char, levels = c("CA","OR","WA"))
str(wwlist_temp$hs_state_fac)
attributes(wwlist_temp$hs_state_fac)

#wwlist_temp %>%
count(hs_state_fac)
rm(wwlist_temp)

wwlist$hs_state_fac <- as_factor(wwlist_temp$hs_state_char)
54 / 58

Create factors [from string variables]

How the levels argument works when underlying data is character
▶ Matches value of underlying data to value of the level attribute
▶ Converts underlying data to integer, with level attribute attached

See chapter 15 of Wickham for more on factors (e.g., modifying factor order,
modifying factor levels)

55 / 58

Creating factors [from integer vectors]

Factors are just integer vectors with level attributes attached to them. So, to create a
factor:

1. create a vector for the underlying data
2. create a vector that has level attributes
3. Attach levels to the data using the factor() function

a1 <- c(1,1,1,0,1,1,0) #a vector of data
a2 <- c("zero","one") #a vector of labels

#attach labels to values
a3 <- factor(a1, labels = a2)
a3
#> [1] one one one zero one one zero
#> Levels: zero one
str(a3)
#> Factor w/ 2 levels "zero","one": 2 2 2 1 2 2 1

Note: By default, factor() function attached “zero” to the lowest value of vector
a1 because “zero” was the first element of vector a2

56 / 58

Creating factors [from integer vectors]

Let’s turn an integer variable into a factor variable in the wwlist data frame

Create integer version of receive_year

#typeof(wwlist_temp$receive_year)

wwlist_temp <- wwlist %>%
filter(zip5 %in% c("98103", "98030", "98290"))

wwlist_temp$zip_int <- as.integer(wwlist_temp$zip5)
str(wwlist_temp$zip_int)
#> int [1:1423] 98103 98030 98290 98290 98103 98030 98103 98030 98290 98290 ...
typeof(wwlist_temp$zip_int)
#> [1] "integer"

57 / 58

Creating factors [from integer vectors]
Assign levels to values of integer variable

variable zip_int is coded 98103, 98030 or 98290
we want to attach value labels 98103=nine-eight-one-zero-three, 98030=nine-eight-zero-three-zero, 98290=nine-eight-two-nine-zero

wwlist_temp$zip_fac <- factor(wwlist_temp$zip_int,
levels = c(98103, 98030, 98290),
labels = c("nine-eight-one-zero-three", "nine-eight-zero-three-zero", "nine-eight-two-nine-zero"))

str(wwlist_temp$zip_fac)
#> Factor w/ 3 levels "nine-eight-one-zero-three",..: 1 2 3 3 1 2 1 2 3 3 ...
str(wwlist_temp$zip5)
#> chr [1:1423] "98103" "98030" "98290" "98290" "98103" "98030" "98103" ...

#Check variable
wwlist_temp %>%

count(zip_fac)
#> # A tibble: 3 x 2
#> zip_fac n
#> <fct> <int>
#> 1 nine-eight-one-zero-three 541
#> 2 nine-eight-zero-three-zero 477
#> 3 nine-eight-two-nine-zero 405

wwlist_temp %>%
count(zip_int)

#> # A tibble: 3 x 2
#> zip_int n
#> <int> <int>
#> 1 98030 477
#> 2 98103 541
#> 3 98290 405

58 / 58

	Introduction
	Augmented vectors
	Review data types and structures
	Attributes and augmented vectors
	Object class
	Class == factor
	Class == labelled
	Comparing labelled class to factor class

	Creating factor variables

