
Lecture 5: Processing across rows
Managing and Manipulating Data Using R

1 / 54

Introduction

2 / 54

Logistics

Required reading for next week:
▶ Grolemund and Wickham 5.6 - 5.7 (grouped summaries and mutates)
▶ Xie, Allaire, and Grolemund 4.1 (R Markdown, ioslides presentations) LINK HERE

and 4.3 (R Markdown, Beamer presentations) LINK HERE
▶ Why? Lectures for this class are beamer_presentation output type.
▶ ioslides_presentation are the most basic presentation output format for

RMarkdown, so learning about ioslides will help you understand beamer
▶ Any slides from lecture we don’t cover

3 / 54

https://bookdown.org/yihui/rmarkdown/ioslides-presentation.html
https://bookdown.org/yihui/rmarkdown/beamer-presentation.html

What we will do today

1. Introduction

2. Introduce group_by() and summarise()
2.1 group_by
2.2 summarise()

3. Combining group_by() and summarise()
3.1 summarise() and Counts
3.2 summarise() and means
3.3 summarise() and logical vectors, part II
3.4 Attach aggregate measures to your data frame

4 / 54

Libraries we will use today

“Load” the package we will use today (output omitted)
▶ you must run this code chunk

library(tidyverse)

If package not yet installed, then must install before you load. Install in “console”
rather than .Rmd file

▶ Generic syntax: install.packages("package_name")
▶ Install “tidyverse”: install.packages("tidyverse")

Note: when we load package, name of package is not in quotes; but when we install
package, name of package is in quotes:

▶ install.packages("tidyverse")
▶ library(tidyverse)

5 / 54

Data we will use today

Data on off-campus recruiting events by public universities
▶ Object df_event

▶ One observation per university, recruiting event
rm(list = ls()) # remove all objects

#load dataset with one obs per recruiting event
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_event_somevars.RData"))
#load("../../data/recruiting/recruit_event_allvars.Rdata")

6 / 54

Processing across observations, introduction

Creation of analysis datasets often requires calculations across obs
Examples:

▶ You have a dataset with one observation per student-term and want to create a
variable of credits attempted per term

▶ You have a dataset with one observation per student-term and want to create a
variable of GPA for the semester or cumulative GPA for all semesters

▶ Number of off-campus recruiting events university makes to each state
▶ Average household income at visited versus non-visited high schools

Note
▶ in today’s lecture, I’ll use the terms “observations” and “rows” interchangeably

7 / 54

Processing across variables vs. processing across observations

Visits by UC Berkeley to public high schools
#> # A tibble: 5 x 6
#> school_id state tot_stu_pub fr_lunch pct_fr_lunch med_inc
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 340882002126 NJ 1846 29 0.0157 178732
#> 2 340147000250 NJ 1044 50 0.0479 62288
#> 3 340561003796 NJ 1505 298 0.198 100684.
#> 4 340165005124 NJ 1900 43 0.0226 160476.
#> 5 341341003182 NJ 1519 130 0.0856 144346

▶ So far, we have focused on “processing across variables”
▶ Performing calculations across columns (i.e., vars), typically within a row (i.e.,

observation)
▶ Example: percent free-reduced lunch (above)

▶ Processing across obs (focus of today’s lecture)
▶ Performing calculations across rows (i.e., obs), often within a column (i.e., variable)
▶ Example: Average household income of visited high schools, by state

8 / 54

Introduce group_by() and summarise()

9 / 54

Strategy for teaching processing across obs

In tidyverse the group_by() and summarise() functions are the primary means
of performing calculations across observations

▶ Usually, processing across observations requires using group_by() and
summarise() together

▶ group_by() and summarise() usually aren’t very useful by themselves (like
peanut butter and jelly)

How we’ll teach:
▶ introduce group_by() and summarise() separately

▶ goal: you understand what each function does
▶ then we’ll combine them

10 / 54

group_by

11 / 54

group_by()

group_by() converts a data frame object into groups. After grouping, functions
performed on data frame are performed “by group”

▶ part of dplyr package within tidyverse; not part of Base R
▶ works best with pipes %>% and summarise() function [described below]

Basic syntax:
▶ group_by(object, vars to group by separated by commas)

Typically, “group_by” variables are character, factor, or integer variables
▶ Possible “group by” variables in df_event data:

▶ university name/id; event type (e.g., public HS, private HS); state

Example: in df_event , create frequency count of event_type

names(df_event)
#without group_by()
df_event %>% count(event_type)
df_event %>% count(instnm)
#group_by() university
df_event %>% group_by(instnm) %>% count(event_type)

12 / 54

group_by()

By itself group_by() doesn’t do much; it just prints data

▶ Below, group df_event data by university, event type, and event state
#without pipes
group_by(df_event, univ_id, event_type, event_state)
#with pipes
df_event %>% group_by(univ_id, event_type, event_state)

But once an object is grouped, all subsequent functions are run separately “by group”
df_event %>% count()
df_event %>% group_by(univ_id) %>% count()
df_event %>% group_by(univ_id) %>% count() %>% str()
df_event %>% group_by(univ_id, event_type) %>% count()
df_event %>% group_by(univ_id, event_type) %>% count() %>% str()
df_event %>% group_by(univ_id, event_type, event_state) %>% count()

13 / 54

Grouping not retained unless you assign it

Below, we’ll use class() function to show whether data frame is grouped

▶ will talk more about class() next week, but for now, just think of it as a
function that provides information about an object

▶ similar to typeof() , but class() provides different info about object

Grouping is not retained unless you assign it
class(df_event)
#> [1] "tbl_df" "tbl" "data.frame"
df_event_grp <- df_event %>% group_by(univ_id, event_type, event_state) # using pipes
class(df_event_grp)
#> [1] "grouped_df" "tbl_df" "tbl" "data.frame"

Use ungroup(object) to un-group grouped data
df_event_grp <- ungroup(df_event_grp)
class(df_event_grp)
#> [1] "tbl_df" "tbl" "data.frame"
rm(df_event_grp)

14 / 54

group_by() student exercise

1. Group by “instnm” and get a frequency count.
▶ How many rows and columns do you have? What do the number of rows mean?

2. Now group by “instnm” and “event_type” and get a frequency count.
▶ How many rows and columns do you have? What do the number of rows mean?

3. Bonus: In the same code chunk, group by “instnm” and “event_type”, but this
time filter for observations where “med_inc” is greater than 75000 and get a
frequency count.

15 / 54

group_by() student exercise solutions
1. Group by “instnm” and get a frequency count.

▶ How many rows and columns do you have? What do the number of rows mean?
df_event %>%

group_by(instnm) %>%
count()

#> # A tibble: 16 x 2
#> instnm n
#> <chr> <int>
#> 1 Arkansas 994
#> 2 Bama 4258
#> 3 Cinci 679
#> 4 CU Boulder 1439
#> 5 Kansas 1014
#> 6 NC State 640
#> 7 Pitt 1225
#> 8 Rutgers 1135
#> 9 S Illinois 549
#> 10 Stony Brook 730
#> 11 UC Berkeley 879
#> 12 UC Irvine 539
#> 13 UGA 827
#> 14 UM Amherst 908
#> 15 UNL 1397
#> 16 USCC 1467

16 / 54

group_by() student exercise solutions

2. Now group by “instnm” and “event_type” and get a frequency count.
▶ How many rows and columns do you have? What do the number of rows mean?

df_event %>%
group_by(instnm, event_type) %>%
count()

#> # A tibble: 80 x 3
#> instnm event_type n
#> <chr> <chr> <int>
#> 1 Arkansas 2yr college 32
#> 2 Arkansas 4yr college 14
#> 3 Arkansas other 112
#> 4 Arkansas private hs 222
#> 5 Arkansas public hs 614
#> 6 Bama 2yr college 127
#> 7 Bama 4yr college 158
#> 8 Bama other 608
#> 9 Bama private hs 963
#> 10 Bama public hs 2402
#> # ... with 70 more rows

17 / 54

group_by() student exercise solutions

3. Bonus: Group by “instnm” and “event_type”, but this time filter for observations
where “med_inc” is greater than 75000 and get a frequency count.

df_event %>%
group_by(instnm, event_type) %>%
filter(med_inc > 75000) %>%
count()

#> # A tibble: 80 x 3
#> instnm event_type n
#> <chr> <chr> <int>
#> 1 Arkansas 2yr college 7
#> 2 Arkansas 4yr college 3
#> 3 Arkansas other 30
#> 4 Arkansas private hs 99
#> 5 Arkansas public hs 303
#> 6 Bama 2yr college 21
#> 7 Bama 4yr college 42
#> 8 Bama other 249
#> 9 Bama private hs 477
#> 10 Bama public hs 1478
#> # ... with 70 more rows

18 / 54

summarise()

19 / 54

summarise() function

summarise() does calculations across rows; then collapses into single row

Usage (i.e., syntax): summarise(.data, ...)

Arguments

▶ .data : a data frame; omit if using summarise() after pipe %>%
▶ ... : Name-value pairs of summary functions.

▶ The name will be the name of the variable in the result.
▶ Value should be expression that returns a single value like min(x) , n()

Value (what summarise() returns/creates)

▶ Object of same class as .data. ; object will have one obs per “by group”
Useful functions (i.e., “helper functions”)

▶ Standalone functions called within summarise() , e.g., mean() , n()
▶ Count function n() takes no arguments; returns number of rows in group

Example: Count total number of events
summarise(df_event, num_events=n()) # without pipes
sum_object <- df_event %>% summarise(num_events=n()) # using pipes
df_event %>% summarise(num_events=n()) # using pipes

20 / 54

Investigate objects created by summarise()

Example: Count total number of events
df_event %>% summarise(num_events=n())
df_event %>% summarise(num_events=n()) %>% str()

Example: What is max value of med_inc across all events
df_event %>% summarise(max_inc=max(med_inc, na.rm = TRUE))
df_event %>% summarise(max_inc=max(med_inc, na.rm = TRUE)) %>% str()

Example: Count total number of events AND max value of median income
df_event %>% summarise(num_events=n(),

max_inc=max(med_inc, na.rm = TRUE))
df_event %>% summarise(num_events=n(),

max_inc=max(med_inc, na.rm = TRUE)) %>% str()

Takeaway

▶ by default, objects created by summarise() are data frames that contain
variables created within summarise() and one observation [per “by group”]

21 / 54

Retaining objects created by summarise()

Object created by summarise() not retained unless you assign it
event_temp <- df_event %>% summarise(num_events=n(),

mean_inc=mean(med_inc, na.rm = TRUE))

event_temp
#> # A tibble: 1 x 2
#> num_events mean_inc
#> <int> <dbl>
#> 1 18680 89089.
rm(event_temp)

22 / 54

summarise() student exercise

1. What is the min value of med_inc across all events?
▶ Hint: Use min()

2. What is the mean value of fr_lunch across all events?
▶ Hint: Use mean()

23 / 54

summarise() student exercise

1. What is min value of med_inc across all events?
df_event %>%

summarise(min_med_income = min(med_inc, na.rm = TRUE))
#> # A tibble: 1 x 1
#> min_med_income
#> <dbl>
#> 1 12894.

24 / 54

summarise() student exercise

2. What is the mean value of fr_lunch across all events?
▶ Hint: Use mean()

df_event %>%
summarise(mean_fr_lunch = mean(fr_lunch, na.rm = TRUE))

#> # A tibble: 1 x 1
#> mean_fr_lunch
#> <dbl>
#> 1 475.

25 / 54

Combining group_by() and summarise()

26 / 54

Combining summarise() and group_by

summarise() on ungrouped vs. grouped data:

▶ By itself, summarise() performs calculations across all rows of data frame then
collapses the data frame to a single row

▶ When data frame is grouped, summarise() performs calculations across rows
within a group and then collapses to a single row for each group

Example: Count the number of events for each university
df_event %>% summarise(num_events=n())
df_event %>% group_by(instnm) %>% summarise(num_events=n())
#> `summarise()` ungrouping output (override with `.groups` argument)

▶ Investigate the object created above
df_event %>% group_by(instnm) %>% summarise(num_events=n()) %>% str()
#> `summarise()` ungrouping output (override with `.groups` argument)

▶ Or we could retain object for later use
event_by_univ <- df_event %>% group_by(instnm) %>% summarise(num_events=n())
#> `summarise()` ungrouping output (override with `.groups` argument)
str(event_by_univ)
event_by_univ # print
rm(event_by_univ)

27 / 54

Combining summarise() and group_by
Task

▶ Count number of recruiting events by event_type for each university
df_event %>% group_by(instnm, event_type) %>%

summarise(num_events=n())
#> `summarise()` regrouping output by 'instnm' (override with `.groups` argument)

df_event %>% group_by(instnm, event_state, event_type) %>%
summarise(num_events=n())

#> `summarise()` regrouping output by 'instnm', 'event_state' (override with `.groups` argument)

#investigate object created
df_event %>% group_by(instnm, event_type) %>%

summarise(num_events=n()) %>% str()
#> `summarise()` regrouping output by 'instnm' (override with `.groups` argument)

Task
▶ By university and event type, count the number of events and calculate the avg.

pct white in the zip-code
df_event %>% group_by(instnm, event_type) %>%

summarise(num_events=n(),
mean_pct_white=mean(pct_white_zip, na.rm = TRUE)

)
#> `summarise()` regrouping output by 'instnm' (override with `.groups` argument)

#investigate object you created
df_event %>% group_by(instnm, event_type) %>%

summarise(num_events=n(),
mean_pct_white=mean(pct_white_zip, na.rm = TRUE)

) %>% str()
#> `summarise()` regrouping output by 'instnm' (override with `.groups` argument)

28 / 54

Combining summarise() and group_by
Recruiting events by UC Berkeley
df_event %>% filter(univ_id == 110635) %>%

group_by(event_type) %>% summarise(num_events=n())
#> `summarise()` ungrouping output (override with `.groups` argument)

Let’s create a dataset of recruiting events at UC Berkeley
event_berk <- df_event %>% filter(univ_id == 110635)

event_berk %>% count(event_type)

The “char” variable event_inst equals “In-State” if event is in same state as the
university
event_berk %>% arrange(event_date) %>%

select(pid, event_date, event_type, event_state, event_inst) %>%
slice(1:8)

#> # A tibble: 8 x 5
#> pid event_date event_type event_state event_inst
#> <int> <date> <chr> <chr> <chr>
#> 1 13100 2017-04-11 other HI Out-State
#> 2 13089 2017-04-14 public hs GA Out-State
#> 3 13088 2017-04-23 private hs CT Out-State
#> 4 13086 2017-04-23 other CA In-State
#> 5 13091 2017-04-24 private hs NY Out-State
#> 6 13087 2017-04-24 public hs CA In-State
#> 7 13092 2017-04-25 other NY Out-State
#> 8 13099 2017-04-25 2yr college CA In-State 29 / 54

summarise() and Counts

30 / 54

summarise() : Counts

The count function n() takes no arguments and returns the size of the current group
event_berk %>% group_by(event_type, event_inst) %>%

summarise(num_events=n())
#> `summarise()` regrouping output by 'event_type' (override with `.groups` argument)

Object not retained unless we assign
berk_temp <- event_berk %>% group_by(event_type, event_inst) %>%

summarise(num_events=n())
#> `summarise()` regrouping output by 'event_type' (override with `.groups` argument)
berk_temp
typeof(berk_temp)
str(berk_temp)

Because counts are so important, dplyr package includes separate count()

function that can be called outside summarise() function
event_berk %>% group_by(event_type, event_inst) %>% count()

berk_temp2 <- event_berk %>% group_by(event_type, event_inst) %>% count()

berk_temp == berk_temp2 # TAKEAWAY: these two objects are identical!
rm(berk_temp,berk_temp2)

31 / 54

summarise() : count with logical vectors and sum()
Logical vectors have values TRUE and FALSE .

▶ When used with numeric functions, TRUE converted to 1 and FALSE to 0.

sum() is a numeric function that returns the sum of values
sum(c(5,10))
sum(c(TRUE,TRUE,FALSE,FALSE))

is.na() returns TRUE if value is NA and otherwise returns FALSE
is.na(c(5,NA,4,NA))
#> [1] FALSE TRUE FALSE TRUE

sum(is.na(c(5,NA,4,NA,5)))
#> [1] 2
sum(!is.na(c(5,NA,4,NA,5)))
#> [1] 3

Application: How many missing/non-missing obs in variable [very important]
event_berk %>% group_by(event_type) %>%

summarise(
n_events = n(),
n_miss_inc = sum(is.na(med_inc)),
n_nonmiss_inc = sum(!is.na(med_inc)),
n_nonmiss_fr_lunch = sum(!is.na(fr_lunch))

)
#> `summarise()` ungrouping output (override with `.groups` argument)

32 / 54

summarise() and count student exercise

Use one code chunk for this exercise. You could tackle this a step at a time and run
the entire code chunk when you have answered all parts of this question. Create your
own variable names.

1. Using the event_berk object, filter observations where event_state is VA and
group by event_type .
1.1 Using the summarise function to create a variable that represents the count for each

event_type .
1.2 Create a variable that represents the sum of missing obs for med_inc .
1.3 create a variable that represents the sum of non-missing obs for med_inc .
1.4 Bonus: Arrange variable you created representing the count of each event_type in

descending order.

33 / 54

summarise() and count student exercise SOLUTION

1. Using the event_berk object filter observations where event_state is VA and
group by event_type .
1.1 Using the summarise function, create a variable that represents the count for each

event_type .
1.2 Now get the sum of missing obs for med_inc .
1.3 Now get the sum of non-missing obs for med_inc .

event_berk %>%
filter(event_state == "VA") %>%
group_by(event_type) %>%
summarise(

n_events = n(),
n_miss_inc = sum(is.na(med_inc)),
n_nonmiss_inc = sum(!is.na(med_inc))) %>%

arrange(desc(n_events))
#> `summarise()` ungrouping output (override with `.groups` argument)
#> # A tibble: 3 x 4
#> event_type n_events n_miss_inc n_nonmiss_inc
#> <chr> <int> <int> <int>
#> 1 public hs 20 0 20
#> 2 private hs 13 0 13
#> 3 other 3 0 3

34 / 54

summarise() and means

35 / 54

summarise() : means

The mean() function within summarise() calculates means, separately for each
group
event_berk %>% group_by(event_inst, event_type) %>% summarise(

n_events=n(),
mean_inc=mean(med_inc, na.rm = TRUE),
mean_pct_white=mean(pct_white_zip, na.rm = TRUE))

#> `summarise()` regrouping output by 'event_inst' (override with `.groups` argument)
#> # A tibble: 10 x 5
#> event_inst event_type n_events mean_inc mean_pct_white
#> <chr> <chr> <int> <dbl> <dbl>
#> 1 In-State 2yr college 111 78486. 40.1
#> 2 In-State 4yr college 14 131691. 58.0
#> 3 In-State other 49 75040. 37.6
#> 4 In-State private hs 35 95229. 48.4
#> 5 In-State public hs 259 87097. 39.6
#> 6 Out-State 2yr college 1 153070. 89.7
#> 7 Out-State 4yr college 4 76913. 65.8
#> 8 Out-State other 89 69004. 56.5
#> 9 Out-State private hs 134 87654. 64.3
#> 10 Out-State public hs 183 103603. 62.0

36 / 54

summarise() : means and na.rm argument
Default behavior of “aggregation functions” (e.g., summarise())

▶ if input has any missing values (NA), than output will be missing.

Many functions have argument na.rm (means “remove NAs ”)

▶ na.rm = FALSE [the default for mean()]
▶ Do not remove missing values from input before calculating
▶ Therefore, missing values in input will cause output to be missing

▶ na.rm = TRUE
▶ Remove missing values from input before calculating
▶ Therefore, missing values in input will not cause output to be missing

#na.rm = FALSE; the default setting
event_berk %>% group_by(event_inst, event_type) %>% summarise(

n_events=n(),
n_miss_inc = sum(is.na(med_inc)),
mean_inc=mean(med_inc, na.rm = FALSE),
n_miss_frlunch = sum(is.na(fr_lunch)),
mean_fr_lunch=mean(fr_lunch, na.rm = FALSE))

#> `summarise()` regrouping output by 'event_inst' (override with `.groups` argument)
#na.rm = TRUE
event_berk %>% group_by(event_inst, event_type) %>% summarise(

n_events=n(),
n_miss_inc = sum(is.na(med_inc)),
mean_inc=mean(med_inc, na.rm = TRUE),
n_miss_frlunch = sum(is.na(fr_lunch)),
mean_fr_lunch=mean(fr_lunch, na.rm = TRUE))

#> `summarise()` regrouping output by 'event_inst' (override with `.groups` argument)
37 / 54

Student exercise

1. Using the event_berk object, group by instnm , event_inst , &
event_type .
1.1 Create vars for number non_missing for these racial/ethnic groups (pct_white_zip ,

pct_black_zip , pct_asian_zip , pct_hispanic_zip , pct_amerindian_zip ,
pct_nativehawaii_zip)

1.2 Create vars for mean percent for each racial/ethnic group

38 / 54

Student exercise solutions
event_berk %>% group_by(instnm, event_inst, event_type) %>%

summarise(
n_events=n(),
n_miss_white = sum(!is.na(pct_white_zip)),
mean_white = mean(pct_white_zip, na.rm = TRUE),
n_miss_black = sum(!is.na(pct_black_zip)),
mean_black = mean(pct_black_zip, na.rm = TRUE),
n_miss_asian = sum(!is.na(pct_asian_zip)),
mean_asian = mean(pct_asian_zip, na.rm = TRUE),
n_miss_lat = sum(!is.na(pct_hispanic_zip)),
mean_lat = mean(pct_hispanic_zip, na.rm = TRUE),
n_miss_na = sum(!is.na(pct_amerindian_zip)),
mean_na = mean(pct_amerindian_zip, na.rm = TRUE),
n_miss_nh = sum(!is.na(pct_nativehawaii_zip)),
mean_nh = mean(pct_nativehawaii_zip, na.rm = TRUE)) %>%
head(6)

#> `summarise()` regrouping output by 'instnm', 'event_inst' (override with `.groups` argument)
#> # A tibble: 6 x 16
#> instnm event_inst event_type n_events n_miss_white mean_white n_miss_black
#> <chr> <chr> <chr> <int> <int> <dbl> <int>
#> 1 UC Be~ In-State 2yr colle~ 111 106 40.1 106
#> 2 UC Be~ In-State 4yr colle~ 14 12 58.0 12
#> 3 UC Be~ In-State other 49 48 37.6 48
#> 4 UC Be~ In-State private hs 35 35 48.4 35
#> 5 UC Be~ In-State public hs 259 258 39.6 258
#> 6 UC Be~ Out-State 2yr colle~ 1 1 89.7 1
#> # ... with 9 more variables: mean_black <dbl>, n_miss_asian <int>,
#> # mean_asian <dbl>, n_miss_lat <int>, mean_lat <dbl>, n_miss_na <int>,
#> # mean_na <dbl>, n_miss_nh <int>, mean_nh <dbl>

39 / 54

summarise() and logical vectors, part II

40 / 54

summarise() : counts with logical vectors, part II
Logical vectors (e.g., is.na()) useful for counting obs that satisfy some condition
is.na(c(5,NA,4,NA))
#> [1] FALSE TRUE FALSE TRUE
typeof(is.na(c(5,NA,4,NA)))
#> [1] "logical"
sum(is.na(c(5,NA,4,NA)))
#> [1] 2

Task: Using object event_berk , create object gt50p_lat_bl with the following
measures for each combination of event_type and event_inst :

▶ count of number of rows for each group
▶ count of rows non-missing for both pct_black_zip and pct_hispanic_zip
▶ count of number of visits to communities where the sum of Black and Latinx

people comprise more than 50% of the total population
gt50p_lat_bl <- event_berk %>% group_by (event_inst, event_type) %>%

summarise(
n_events=n(),
n_nonmiss_latbl = sum(!is.na(pct_black_zip) & !is.na(pct_hispanic_zip)),
n_majority_latbl= sum(pct_black_zip+ pct_hispanic_zip>50, na.rm = TRUE)

)
#> `summarise()` regrouping output by 'event_inst' (override with `.groups` argument)
gt50p_lat_bl # print object
str(gt50p_lat_bl)

41 / 54

summarise() : logical vectors to count proportions

Synatx: group_by(vars) %>% summarise(prop = mean(TRUE/FALSE conditon))

Task: separately for in-state/out-of-state, what proportion of visits to public high
schools are to communities with median income greater than $100,000?
Steps:

1. Filter public HS visits
2. group by in-state vs. out-of-state
3. Create measure

event_berk %>% filter(event_type == "public hs") %>% # filter public hs visits
group_by (event_inst) %>% # group by in-state vs. out-of-state
summarise(

n_events=n(), # number of events by group
n_nonmiss_inc = sum(!is.na(med_inc)), # w/ nonmissings values median inc,
p_incgt100k = mean(med_inc>100000, na.rm=TRUE)) # proportion visits to $100K+ commmunities

#> `summarise()` ungrouping output (override with `.groups` argument)
#> # A tibble: 2 x 4
#> event_inst n_events n_nonmiss_inc p_incgt100k
#> <chr> <int> <int> <dbl>
#> 1 In-State 259 256 0.273
#> 2 Out-State 183 183 0.519

42 / 54

summarise() : logical vectors to count proportions

What if we forgot to put na.rm=TRUE in the above task?

Task: separately for in-state/out-of-state, what proportion of visits to public high
schools are to communities with median income greater than $100,000?
event_berk %>% filter(event_type == "public hs") %>% # filter public hs visits

group_by (event_inst) %>% # group by in-state vs. out-of-state
summarise(

n_events=n(), # number of events by group
n_nonmiss_inc = sum(!is.na(med_inc)), # w/ nonmissings values median inc,
p_incgt100k = mean(med_inc>100000)) # proportion visits to $100K+ commmunities

#> `summarise()` ungrouping output (override with `.groups` argument)
#> # A tibble: 2 x 4
#> event_inst n_events n_nonmiss_inc p_incgt100k
#> <chr> <int> <int> <dbl>
#> 1 In-State 259 256 NA
#> 2 Out-State 183 183 0.519

43 / 54

summarise() : Other “helper” functions

Lots of other functions we can use within summarise()

Common functions to use with summarise() :

Function Description
n count
n_distinct count unique values
mean mean
median median
max largest value
min smallest value
sd standard deviation
sum sum of values
first first value
last last value
nth nth value
any condition true for at least one value

Note: These functions can also be used on their own or with mutate()

44 / 54

summarise() : Other functions
Maximum value in a group
max(c(10,50,8))
#> [1] 50

Task: For each combination of in-state/out-of-state and event type, what is the
maximum value of med_inc ?
event_berk %>% group_by(event_type, event_inst) %>%

summarise(max_inc = max(med_inc))
#> `summarise()` regrouping output by 'event_type' (override with `.groups` argument)
#> # A tibble: 10 x 3
#> event_type event_inst max_inc
#> <chr> <chr> <dbl>
#> 1 2yr college In-State NA
#> 2 2yr college Out-State 153070.
#> 3 4yr college In-State NA
#> 4 4yr college Out-State NA
#> 5 other In-State NA
#> 6 other Out-State NA
#> 7 private hs In-State 250001
#> 8 private hs Out-State NA
#> 9 public hs In-State NA
#> 10 public hs Out-State 223556.

event_berk %>% group_by(event_type, event_inst) %>%
summarise(max_inc = max(med_inc, na.rm = TRUE))

#> `summarise()` regrouping output by 'event_type' (override with `.groups` argument)
#> # A tibble: 10 x 3
#> event_type event_inst max_inc
#> <chr> <chr> <dbl>
#> 1 2yr college In-State 178456.
#> 2 2yr college Out-State 153070.
#> 3 4yr college In-State 250001
#> 4 4yr college Out-State 119869
#> 5 other In-State 145903
#> 6 other Out-State 158670.
#> 7 private hs In-State 250001
#> 8 private hs Out-State 223556.
#> 9 public hs In-State 250001
#> 10 public hs Out-State 223556.

What did we do wrong here?

45 / 54

summarise() : Other functions
Isolate first/last/nth observation in a group
x <- c(10,15,20,25,30)
first(x)
last(x)
nth(x,1)
nth(x,3)
nth(x,10)

Task: after sorting object event_berk by event_type and
event_datetime_start , what is the value of event_date for:

▶ first event for each event type?
▶ the last event for each event type?
▶ the 50th event for each event type?

event_berk %>% arrange(event_type, event_datetime_start) %>%
group_by(event_type) %>%
summarise(

n_events = n(),
date_first= first(event_date),
date_last= last(event_date),
date_50th= nth(event_date, 50)

)
#> `summarise()` ungrouping output (override with `.groups` argument)

46 / 54

Student exercise

Identify value of event_date for the nth event in each by group
Specific task:

▶ arrange (i.e., sort) by event_type and event_datetme_start , then group by
event_type , and then identify the value of event_date for:
▶ the first event in each by group (event_type)
▶ the second event in each by group
▶ the third event in each by group
▶ the fourth event in each by group
▶ the fifth event in each by group

47 / 54

Student exercise solution

event_berk %>% arrange(event_type, event_datetime_start) %>%
group_by(event_type) %>%
summarise(

n_events = n(),
date_1st= first(event_date),
date_2nd= nth(event_date,2),
date_3rd= nth(event_date,3),
date_4th= nth(event_date,4),
date_5th= nth(event_date,5))

#> `summarise()` ungrouping output (override with `.groups` argument)
#> # A tibble: 5 x 7
#> event_type n_events date_1st date_2nd date_3rd date_4th date_5th
#> <chr> <int> <date> <date> <date> <date> <date>
#> 1 2yr college 112 2017-04-25 2017-09-05 2017-09-05 2017-09-06 2017-09-06
#> 2 4yr college 18 2017-04-30 2017-05-01 2017-05-06 2017-09-13 2017-09-14
#> 3 other 138 2017-04-11 2017-04-23 2017-04-25 2017-04-29 2017-05-14
#> 4 private hs 169 2017-04-23 2017-04-24 2017-04-29 2017-04-30 2017-09-05
#> 5 public hs 442 2017-04-14 2017-04-24 2017-04-26 2017-04-27 2017-04-27

48 / 54

Attach aggregate measures to your data frame

49 / 54

Attach aggregate measures to your data frame

We can attach aggregate measures to a data frame by using group_by without
summarise()
What do I mean by “attaching aggregate measures to a data frame”?

▶ Calculate measures at the by_group level, but attach them to original object
rather than creating an object with one row for each by_group

Task: Using event_berk data frame, create (1) a measure of average income across
all events and (2) a measure of average income for each event type

▶ resulting object should have same number of observations as event_berk

Steps:

1. create measure of avg. income across all events without using group_by() or
summarise() and assign as (new) object

2. Using object from previous step, create measure of avg. income across by event
type using group_by() without summarise() and assign as new object

50 / 54

Attach aggregate measures to your data frame

Task: Using event_berk data frame, create (1) a measure of average income across
all events and (2) a measure of average income for each event type

1. Create measure of average income across all events
event_berk_temp <- event_berk %>%

arrange(event_date) %>% # sort by event_date (optional)
select(event_date, event_type,med_inc) %>% # select vars to be retained (optioanl)
mutate(avg_inc = mean(med_inc, na.rm=TRUE)) # create avg. inc measure

dim(event_berk_temp)
event_berk_temp %>% head(5)

2. Create measure of average income by event type
event_berk_temp <- event_berk_temp %>%

group_by(event_type) %>% # grouping by event type
mutate(avg_inc_type = mean(med_inc, na.rm=TRUE)) # create avg. inc measure

str(event_berk_temp)
event_berk_temp %>% head(5)

51 / 54

Attach aggregate measures to your data frame

Task: Using event_berk_temp from previous question, create a measure that
identifies whether med_inc associated with the event is higher/lower than average
income for all events of that type
Steps:

1. Create measure of average income for each event type [already done]
2. Create 0/1 indicator that identifies whether median income at event location is

higher than average median income for events of that type
average income at recruiting events across all universities
event_berk_tempv2 <- event_berk_temp %>%

mutate(gt_avg_inc_type = med_inc > avg_inc_type) %>%
select(-(avg_inc)) # drop avg_inc (optional)

event_berk_tempv2 # note how med_ic = NA are treated

Same as above, but this time create integer indicator rather than logical
event_berk_tempv2 <- event_berk_tempv2 %>%

mutate(gt_avg_inc_type = as.integer(med_inc > avg_inc_type))
event_berk_tempv2 %>% head(4)

52 / 54

Student exercise

Task: is pct_white_zip at a particular event higher or lower than the average
pct_white_zip for that event_type ?

▶ Note: all events attached to a particular zip_code
▶ pct_white_zip : pct of people in that zip_code who identify as white

Steps in task:
▶ Create measure of average pct white for each event_type
▶ Compare whether pct_white_zip is higher or lower than this average

53 / 54

Student exercise solution

Task: is pct_white_zip at a particular event higher or lower than the average
pct_white_zip for that event_type ?
event_berk_tempv3 <- event_berk %>%

arrange(event_date) %>% # sort by event_date (optional)
select(event_date, event_type, pct_white_zip) %>% #optional
group_by(event_type) %>% # grouping by event type
mutate(avg_pct_white = mean(pct_white_zip, na.rm=TRUE),

gt_avg_pctwhite_type = as.integer(pct_white_zip > avg_pct_white))
event_berk_tempv3 %>% head(4)
#> # A tibble: 4 x 5
#> event_date event_type pct_white_zip avg_pct_white gt_avg_pctwhite_type
#> <date> <chr> <dbl> <dbl> <int>
#> 1 2017-04-11 other 37.2 49.7 0
#> 2 2017-04-14 public hs 78.3 48.9 1
#> 3 2017-04-23 private hs 84.7 61.0 1
#> 4 2017-04-23 other 20.9 49.7 0

54 / 54

	Introduction
	Introduce group_by() and summarise()
	group_by
	summarise()

	Combining group_by() and summarise()
	summarise() and Counts
	summarise() and means
	summarise() and logical vectors, part II
	Attach aggregate measures to your data frame

