
Lecture 4: Pipes and variable creation
Managing and Manipulating Data Using R

1 / 72

Introduction

2 / 72

What we will do today

1. Introduction
1.1 Data for lecture

2. Pipes

3. Creating variables using mutate (tidyverse approach)
3.1 Introduce mutate() function
3.2 Using if_else() function within mutate()
3.3 Using recode() function within mutate()
3.4 Using case_when() function within mutate()

4. Base R appraoch to creating new variables

3 / 72

Libraries we will use today

“Load” the package we will use today (output omitted)
▶ you must run this code chunk

library(tidyverse)

If package not yet installed, then must install before you load. Install in “console”
rather than .Rmd file

▶ Generic syntax: install.packages("package_name")
▶ Install “tidyverse”: install.packages("tidyverse")

Note: when we load package, name of package is not in quotes; but when we install
package, name of package is in quotes:

▶ install.packages("tidyverse")
▶ library(tidyverse)

4 / 72

Data for lecture

5 / 72

Lecture 3 data: prospects purchased by Western Washington U.

The “Student list” business
▶ Universities identify/target “prospects” by buying “student lists” from College

Board/ACT (e.g., $.40 per prospect)
▶ Prospect lists contain contact info (e.g., address, email), academic achievement,

socioeconomic, demographic characteristics
▶ Universities choose which prospects to purchase by filtering on criteria like

zip-code, GPA, test score range, etc.
#load prospect list data
load(url("https://github.com/ozanj/rclass/raw/master/data/prospect_list/wwlist_merged.RData"))

Object wwlist
▶ De-identified list of prospective students purchased by Western Washington

University from College Board
▶ We collected these data using FOIA request

▶ ASIDE: Become an expert on collecting data via FOIA requests and you will become a
superstar!

6 / 72

Lecture 3 data: prospects purchased by Western Washington U.

Observations on wwlist
▶ each observation represents a prospective student

typeof(wwlist)
#> [1] "list"
dim(wwlist)
#> [1] 268396 41

Variables on wwlist
▶ some vars provide de-identified data on individual prospects

▶ e.g., psat_range , state , sex , ethn_code
▶ some vars provide data about zip-code student lives in

▶ e.g., med_inc , pop_total , pop_black
▶ some vars provide data about school student enrolled in

▶ e.g., fr_lunch is number of students on free/reduced lunch
▶ note: bad merge between prospect-level data and school-level data

names(wwlist)
str(wwlist)
glimpse(wwlist) # tidyverse function, similar to str()

7 / 72

Lecture 3 data: prospects purchased by Western Washington U.
Variable firstgen identifies whether prospect is a first-generation college student

Imagine we want to isolate all the first-generation prospects
1. Investigate variable type/structure.
▶ A dichotomous var, but stored as character in wwlist . So must use quotes (''

or "") to filter/subset based on values of firstgen

str(wwlist$firstgen)
#> chr [1:268396] NA "N" "N" "N" NA "N" "N" "Y" "Y" "N" "N" "N" "N" "N" "N" ...

2. Create frequency table to identify possible values of firstgen

table(wwlist$firstgen, useNA = "always")
#>
#> N Y <NA>
#> 193333 65046 10017

3. Isolate all the first-gen prospects
filter(wwlist, firstgen == "Y")
#> # A tibble: 65,046 x 41
#> receive_date psat_range state zip9 for_country sex hs_ceeb_code hs_name
#> <date> <chr> <chr> <chr> <chr> <chr> <int> <chr>
#> 1 2016-05-31 1170-1520 WA 9812~ <NA> F 481128 Nathan~
#> 2 2016-05-31 930-1160 WA 9829~ <NA> M 481335 Sultan~
#> 3 2016-05-31 1030-1160 CO 8012~ <NA> M 60926 Chatfi~
#> 4 2016-05-31 930-1160 WA 9837~ <NA> F 480442 Graham~
#> 5 2016-05-31 930-1160 WA 9811~ <NA> F 481085 The Bu~
#> 6 2016-05-31 1030-1160 ID 8345~ <NA> F 130170 Teton ~
#> 7 2016-05-31 1030-1160 CO 8013~ <NA> F 60748 Rock C~
#> 8 2016-05-31 930-1160 WA 9816~ <NA> M 481149 Health~
#> 9 2016-05-31 930-1160 WA 9810~ <NA> M 481055 Clevel~
#> 10 2016-05-31 930-1160 WA 9814~ <NA> M 480538 Mount ~
#> # ... with 65,036 more rows, and 33 more variables: hs_city <chr>,
#> # hs_state <chr>, hs_grad_date <date>, ethn_code <chr>, homeschool <chr>,
#> # firstgen <chr>, zip5 <chr>, pop_total_zip <int>, pop_white_zip <int>,
#> # pop_black_zip <int>, pop_asian_zip <int>, pop_latinx_zip <int>,
#> # pop_nativeam_zip <int>, pop_nativehawaii_zip <int>,
#> # pop_multirace_zip <int>, pop_otherrace_zip <int>, med_inc_zip <dbl>,
#> # school_type <chr>, merged_hs <chr>, school_category <chr>, total_12 <int>,
#> # total_students <int>, fr_lunch <int>, pop_total_state <int>,
#> # pop_white_state <int>, pop_black_state <int>, pop_nativeam_state <int>,
#> # pop_asian_state <int>, pop_nativehawaii_state <int>,
#> # pop_otherrace_state <int>, pop_multirace_state <int>,
#> # pop_latinx_state <int>, med_inc_state <dbl>

8 / 72

Pipes

9 / 72

What are “pipes”, %>%

Pipes are a means of perfoming multiple steps in a single line of code
▶ When writing code, the pipe symbol is %>%
▶ Basic flow of using pipes in code:

▶ object %>% some_function %>% some_function %>% some_function
▶ Pipes work from left to right:

▶ The object from left of %>% pipe symbol is input as the first argument of the function
to the right of the %>% pipe symbol

▶ In turn, the resulting output becomes the input (the first argument) of the function to
the right of the next %>% pipe symbol

▶ Pipes are part of tidyverse suite of packages, not base R

Intuitive mnemonic device for understanding pipes
▶ whenever you see a pipe %>% think of the words “and then…”

Example: isolate all the first-generation prospects [output omitted]
▶ in words: start with object wwlist and then filter first generation students

wwlist %>% filter(firstgen == "Y")

10 / 72

Do task with and without pipes

Task: Using object wwlist print data for “first-gen” prospects (firstgen == "Y")
without pipes
filter(wwlist, firstgen == "Y")

with pipes
wwlist %>% filter(firstgen == "Y")

Comparing the two approaches:
▶ “without pipes”, object wwlist is the first argument filter() function
▶ In “pipes” approach, you don’t specify object wwlist as first argument in

filter()
▶ Why? Because %>% “pipes” the object to the left of the %>% operator into the

function to the right of the %>% operator

Main takeaway:
▶ When writing code using pipes, functions to right of %>% pipe operator should

not explicitly name object that is the input to the function.
▶ Rather, object to the left of %>% pipe operator is automatically the input.

11 / 72

More intuition on the pipe operator, %>%

The pipe operator “pipes” (verb) an object from left of %>% operator into the
function to the right of the %>% operator

Example, the “structure” function str() , with and without pipes

▶ Examine syntax for str() : str(object, ...)

?str

▶ Investigate structure of dataframe wwlist without and with pipes
str(wwlist) # without pipe

wwlist %>% str() # with pipe

Questions:
▶ In the pipes approach, wwlist %>% str() , why didn’t we need to insert

argument values inside str()
▶ What would happen if we just ran this line of code?

str()

12 / 72

Do task with and without pipes
Task: Using object wwlist , print data for “first-gen” prospects for selected variables
[output omitted]
#Without pipes
select(filter(wwlist, firstgen == "Y"), state, hs_city, sex)
#With pipes
wwlist %>% filter(firstgen == "Y") %>% select(state, hs_city, sex)

Comparing the two approaches:
▶ In the “without pipes” approach, code is written “inside out”

▶ The first step in the task – identifying the object – is the innermost part of code
▶ The last step in task – selecting variables to print – is the outermost part of code

▶ In “pipes” approach the left-to-right order of code matches how we think about
the task

▶ First, we start with an object and then (%>%) we use filter() to isolate first-gen
students and then (%>%) we select which variables to print

Important: str() function helpful for understanding what object is piped in from
one function to another
#object that was "piped" into `select()` from `filter()`
wwlist %>% filter(firstgen == "Y") %>% str()

#object that was created after `select()` function
wwlist %>% filter(firstgen == "Y") %>% select(state, hs_city, sex) %>% str()

13 / 72

Aside: count() function

count() function from dplyr package counts the number of obs by group

Syntax [see help file for full syntax]

▶ count(x,...)

Arguments [see help file for full arguments]
▶ x : an object, often a data frame
▶ ... : variables to group by

Examples of using count()

▶ Without vars in ... argument, counts number of obs in object
count(wwlist)
wwlist %>% count()
wwlist %>% count() %>% str()

▶ With vars in ... argument, counts number of obs per variable value
▶ This is the best way to create frequency table, better than table()
▶ note: by default, count() always shows NAs [this is good!]

count(wwlist,school_category)
wwlist %>% count(school_category)
wwlist %>% count(school_category) %>% str()

14 / 72

pipe operators and new lines

Often want to insert line breaks to make long line of code more readable
▶ When inserting line breaks, pipe operator %>% should be the last thing before a

line break, not the first thing after a line break
This works
wwlist %>% filter(firstgen == "Y") %>%

select(state, hs_city, sex) %>%
count(sex)

This works too
wwlist %>% filter(firstgen == "Y",

state != "WA") %>%
select(state, hs_city, sex) %>%
count(sex)

This doesn’t work
wwlist %>% filter(firstgen == "Y")

%>% select(state, hs_city, sex)
%>% count(sex)

15 / 72

The power of pipes
You might be thinking, “what’s the big deal?”
TasK:

▶ in one line of code, modify wwlist and create bar chart that counts number of
prospects purchased by race/ethnicity, separately for in-state vs. out-of-state

wwlist %>% filter(is.na(state)==0) %>% # drop obs where variable state missing
mutate(# create out-of-state indicator; create recoded ethnicity var

out_state = as_factor(if_else(state != "WA", "out-of-state", "in-state")),
ethn_race = recode(ethn_code,

"american indian or alaska native" = "nativeam",
"asian or native hawaiian or other pacific islander" = "api",
"black or african american" = "black",
"cuban" = "latinx",
"mexican/mexican american" = "latinx",
"not reported" = "not_reported",
"other-2 or more" = "multirace",
"other spanish/hispanic" = "latinx",
"puerto rican" = "latinx",
"white" = "white")) %>%

group_by(out_state) %>% # group_by "in-state" vs. "out-of-state"
count(ethn_race) %>% # count of number of prospects purchased by race
ggplot(aes(x=ethn_race, y=n)) + # plot
ylab("number of prospects") + xlab("race/ethnicity") +
geom_col() + coord_flip() + facet_wrap(~ out_state)

16 / 72

The power of pipes
TasK:

▶ in one line of code, modify wwlist and create bar chart of median income (in
zip-code) of prospects purchased by race/ethnicity, separately for in-state
vs. out-of-state

wwlist %>% filter(is.na(state)==0) %>% # drop obs where variable state missing
mutate(# create out-of-state indicator; create recoded ethnicity var

out_state = as_factor(if_else(state != "WA", "out-of-state", "in-state")),
ethn_race = recode(ethn_code,

"american indian or alaska native" = "nativeam",
"asian or native hawaiian or other pacific islander" = "api",
"black or african american" = "black",
"cuban" = "latinx",
"mexican/mexican american" = "latinx",
"not reported" = "not_reported",
"other-2 or more" = "multirace",
"other spanish/hispanic" = "latinx",
"puerto rican" = "latinx",
"white" = "white")) %>%

group_by(out_state, ethn_race) %>% # group_by "out-state" and ethnicity
summarize(avg_inc_zip = mean(med_inc_zip, na.rm = TRUE)) %>% # calculate avg. inc
ggplot(aes(x=out_state, y=avg_inc_zip)) +
ylab("avg. income in zip code") + xlab("") +
geom_col() + coord_flip() + facet_wrap(~ ethn_race) # plot

17 / 72

The power of pipes

Example R script from Ben Skinner, which creates analysis data for Skinner (2018)
▶ Link to R script

Other relevant links
▶ Link to Github repository for Skinner (2018)
▶ Link to published paper
▶ Link to Skinner’s Github page

▶ A lot of cool stuff here
▶ Link to Skinner’s personal website

▶ A lot of cool stuff here

18 / 72

https://link.springer.com/article/10.1007%2Fs11162-018-9507-1
https://github.com/btskinner/colchoice_rep/blob/master/scripts/makedata.r
https://github.com/btskinner/colchoice_rep
https://link.springer.com/article/10.1007%2Fs11162-018-9507-1
https://github.com/btskinner
https://www.btskinner.io/

Do task with and without pipes [STUDENTS WORK ON THEIR OWN]

Task:
▶ Count the number “first-generation” prospects from the state of Washington

Without pipes
count(filter(wwlist, firstgen == "Y", state == "WA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 32428

With pipes
wwlist %>% filter(firstgen == "Y", state == "WA") %>% count()
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 32428

19 / 72

Do task with and without pipes [STUDENTS WORK ON THEIR OWN]
Task: frequency table of school_type for non first-gen prospects from WA

without pipes
wwlist_temp <- filter(wwlist, firstgen == "N", state == "WA")
table(wwlist_temp$school_type, useNA = "always")
#>
#> private public <NA>
#> 11 46146 12489
rm(wwlist_temp) # cuz we don't need after creating table

With pipes
wwlist %>% filter(firstgen == "N", state == "WA") %>% count(school_type)
#> # A tibble: 3 x 2
#> school_type n
#> <chr> <int>
#> 1 private 11
#> 2 public 46146
#> 3 <NA> 12489

Comparison of two approaches
▶ without pipes, task requires multiple lines of code (this is quite common)

▶ first line creates object; second line analyzes object
▶ with pipes, task can be completed in one line of code and you aren’t left with

objects you don’t care about
20 / 72

Student exercises with pipes

1. Using object wwlist select the following variables (state, firstgen, ethn_code)
and assign <- them to object wwlist_temp . (ex. wwlist_temp <- wwlist)

2. Using the object you just created wwlist_temp , create a frequency table of
ethn_code for first-gen prospects from California.

3. Bonus: Try doing question 1 and 2 together. Use original object wwlist , but do
not assign to a new object.

Once finished you can rm(wwlist_temp)

21 / 72

Solution to exercises with pipes

1. Using object wwlist select the following variables (state, firstgen, ethn_code)
and assign them to object wwlist_temp

wwlist_temp <- wwlist %>%
select(state, firstgen, ethn_code)

22 / 72

Solution to exercises with pipes

2. Using the object you just created wwlist_temp , create a frequency table of
ethn_code for first-gen prospects from California.

#names(wwlist)
wwlist_temp %>%

filter(firstgen == "Y", state == "CA") %>% count(ethn_code)
#> # A tibble: 10 x 2
#> ethn_code n
#> <chr> <int>
#> 1 american indian or alaska native 4
#> 2 asian or native hawaiian or other pacific islander 86
#> 3 black or african american 10
#> 4 cuban 1
#> 5 mexican/mexican american 643
#> 6 not reported 113
#> 7 other-2 or more 4197
#> 8 other spanish/hispanic 179
#> 9 puerto rican 8
#> 10 white 2933

23 / 72

Solution to exercises with pipes

3. Bonus: Try doing question 1 and 2 together.
wwlist %>%

select(state, firstgen, ethn_code) %>%
filter(firstgen == "Y", state == "CA") %>%
count(ethn_code)

#> # A tibble: 10 x 2
#> ethn_code n
#> <chr> <int>
#> 1 american indian or alaska native 4
#> 2 asian or native hawaiian or other pacific islander 86
#> 3 black or african american 10
#> 4 cuban 1
#> 5 mexican/mexican american 643
#> 6 not reported 113
#> 7 other-2 or more 4197
#> 8 other spanish/hispanic 179
#> 9 puerto rican 8
#> 10 white 2933
#rm(wwlist_temp)

rm(wwlist_temp)

24 / 72

Creating variables using mutate (tidyverse approach)

25 / 72

Our plan for learning how to create new variables

Recall that dplyr package within tidyverse provide a set of functions that can be
described as “verbs”: subsetting, sorting, and transforming

What we’ve done Where we’re going
Subsetting data Transforming data
- select() variables - mutate() creates new variables
- filter() observations - summarize() calculates across rows
Sorting data - group_by() to calculate across rows within groups
- arrange()

Today

▶ we’ll use mutate() to create new variables based on calculations across columns
within a row

Next week
▶ we’ll combine mutate() with summarize() and group_by() to create

variables based on calculations across rows

26 / 72

Create new data frame based on df_school_all

Data frame df_school_all has one obs per US high school and then variables
identifying number of visits by particular universities
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_school_allvars.RData"))
names(df_school_all)
#> [1] "state_code" "school_type" "ncessch"
#> [4] "name" "address" "city"
#> [7] "zip_code" "pct_white" "pct_black"
#> [10] "pct_hispanic" "pct_asian" "pct_amerindian"
#> [13] "pct_other" "num_fr_lunch" "total_students"
#> [16] "num_took_math" "num_prof_math" "num_took_rla"
#> [19] "num_prof_rla" "avgmedian_inc_2564" "latitude"
#> [22] "longitude" "visits_by_196097" "visits_by_186380"
#> [25] "visits_by_215293" "visits_by_201885" "visits_by_181464"
#> [28] "visits_by_139959" "visits_by_218663" "visits_by_100751"
#> [31] "visits_by_199193" "visits_by_110635" "visits_by_110653"
#> [34] "visits_by_126614" "visits_by_155317" "visits_by_106397"
#> [37] "visits_by_149222" "visits_by_166629" "total_visits"
#> [40] "inst_196097" "inst_186380" "inst_215293"
#> [43] "inst_201885" "inst_181464" "inst_139959"
#> [46] "inst_218663" "inst_100751" "inst_199193"
#> [49] "inst_110635" "inst_110653" "inst_126614"
#> [52] "inst_155317" "inst_106397" "inst_149222"
#> [55] "inst_166629"

27 / 72

Create new data frame based on df_school_all
Create new version of data frame, called school_v2 , which we’ll use to introduce
how to create new variables
school_v2 <- df_school_all %>%

select(-contains("inst_")) %>% # remove vars that start with "inst_"
rename(# rename selected variables

visits_by_berkeley = visits_by_110635,
visits_by_boulder = visits_by_126614,
visits_by_bama = visits_by_100751,
visits_by_stonybrook = visits_by_196097,
visits_by_rutgers = visits_by_186380,
visits_by_pitt = visits_by_215293,
visits_by_cinci = visits_by_201885,
visits_by_nebraska = visits_by_181464,
visits_by_georgia = visits_by_139959,
visits_by_scarolina = visits_by_218663,
visits_by_ncstate = visits_by_199193,
visits_by_irvine = visits_by_110653,
visits_by_kansas = visits_by_155317,
visits_by_arkansas = visits_by_106397,
visits_by_sillinois = visits_by_149222,
visits_by_umass = visits_by_166629,
num_took_read = num_took_rla,
num_prof_read = num_prof_rla,
med_inc = avgmedian_inc_2564

)

glimpse(school_v2)
28 / 72

Introduce mutate() function

29 / 72

Introduce mutate() function

mutate() is tidyverse approach to creating variables (not Base R approach)

Description of mutate()

▶ creates new columns (variables) that are functions of existing columns
▶ After creating a new variable using mutate() , every row of data is retained
▶ mutate() works best with pipes %>%

Task:
▶ Using data frame school_v2 create new variable that measures the pct of

students on free/reduced lunch (output omitted)
create new dataset with fewer vars; not necessary to do this
school_sml <- school_v2 %>%

select(ncessch, school_type, num_fr_lunch, total_students)

create new var
school_sml %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students)

remove data frame object
rm(school_sml)

30 / 72

Investigate mutate() syntax

Usage (i.e., syntax)

▶ mutate(.data,...)

Arguments
▶ .data : a data frame

▶ if using mutate() after pipe operator %>% , then this argument can be omitted
▶ Why? Because data frame object to left of %>% “piped in” to first argument of mutate()

▶ ... : expressions used to create new variables
▶ “Name-value pairs of expressions”
▶ “The name of each argument will be the name of a new variable, and the value will be

its corresponding value.”
▶ “Use a NULL value in mutate to drop a variable.”
▶ “New variables overwrite existing variables of the same name”

Value
▶ returns a (data frame) object that contains the original input data frame and new

variables that were created by mutate()

31 / 72

Investigate mutate() syntax

Can create variables using standard mathematical or logical operators [output
omitted]
#glimpse(school_v2)
school_v2 %>%

select(state_code,school_type,ncessch,med_inc,num_fr_lunch,total_students,num_took_math) %>%
mutate(# each argument creates a new variable, name of argument is name of variable

one = 1,
med_inc000 = med_inc/1000,
pct_fr_lunch = num_fr_lunch/total_students*100,
took_math_na = is.na(num_took_math)==1

) %>%
select(state_code,school_type,ncessch,one,med_inc,med_inc000,num_fr_lunch,total_students,pct_fr_lunch,num_took_math,took_math_na)

Can create variables using “helper functions” called within mutate() [output
omitted]

▶ These are standalone functions can be called within mutate()
▶ e.g., if_else() , recode() , case_when()

▶ will walk through helper functions in more detail in subsequent sections of lecture
school_v2 %>%

select(state_code,ncessch,name,school_type) %>%
mutate(public = if_else(school_type == "public", 1, 0))

32 / 72

Introduce mutate() function

New variable not retained unless we assign <- it to an object (existing or new)

▶ mutate() without assignment
school_v2 %>% mutate(pct_fr_lunch = num_fr_lunch/total_students)

names(school_v2)

▶ mutate() with assignment
school_v2_temp <- school_v2 %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students)

names(school_v2_temp)
rm(school_v2_temp)

33 / 72

mutate() can create multiple variables at once

mutate() can create multiple variables at once
school_v2 %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students,
pct_prof_math= num_prof_math/num_took_math) %>%

select(num_fr_lunch, total_students, pct_fr_lunch,
num_prof_math, num_took_math, pct_prof_math)

Or we could write code this way:
school_v2 %>%

select(num_fr_lunch, total_students, num_prof_math, num_took_math) %>%
mutate(pct_fr_lunch = num_fr_lunch/total_students,

pct_prof_math= num_prof_math/num_took_math)

mutate() can use variables previously created within mutate()
school_v2 %>%

select(num_prof_math, num_took_math, num_took_read,num_prof_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math,

pct_prof_read = num_prof_read/num_took_read,
avg_pct_prof_math_read = (pct_prof_math + pct_prof_read)/2)

34 / 72

mutate() , removing variables created by mutate()
Within mutate() use syntax var_name = NULL to remove variable from data frame

▶ note: Variable not permanently removed from data frame unless you use
assignment <- to create new data frame or overwrite existing data frame

ncol(school_v2)
school_v2 %>%

select(num_prof_math, num_took_math, num_took_read,num_prof_read) %>% glimpse()

school_v2 %>%
select(num_prof_math, num_took_math, num_took_read,num_prof_read) %>%
mutate(num_prof_math = NULL, num_took_math = NULL) %>% glimpse()

#But variables not permanently removed because we didn't use assignment
ncol(school_v2)

Why would we remove variables within mutate() rather select() ?
▶ remove temporary “work” variables used to create desired variable
▶ Example: measure of average of pct who passed math and pct who passed reading

school_v2 %>%
select(num_prof_math, num_took_math, num_took_read,num_prof_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math, # create work var

pct_prof_read = num_prof_read/num_took_read, # create work var
avg_pct_prof_math_read = (pct_prof_math + pct_prof_read)/2, #create analysis var
pct_prof_math = NULL, # remove work var
pct_prof_read = NULL) %>% # remove work var

glimpse()
35 / 72

Student exercise using mutate()

1. Using the object school_v2 , select the following variables (num_prof_math ,
num_took_math , num_prof_read , num_took_read) and create a measure of

percent proficient in math pct_prof_math and percent proficient in reading
pct_prof_read .

2. Now using the code for question 1, filter schools where at least 50% of students
are proficient in math & reading.

3. Count the number of schools from question 2.

4. Using school_v2 , using mutate() combined with is.na() create a
dichotomous indicator variable med_inc_na that identifies whether med_inc is
missing (NA) or not. And then use syntax count(var_name) to create
frequency table of variable med_inc_na . How many observations are missing?

36 / 72

Solutions for exercise using mutate()
1. Using the object school_v2 , select the following variables (num_prof_math ,

num_took_math , num_prof_read , num_took_read) and create a measure of
percent proficient in math pct_prof_math and percent proficient in reading
pct_prof_read .

school_v2 %>%
select(num_prof_math, num_took_math, num_prof_read, num_took_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math,

pct_prof_read = num_prof_read/num_took_read)
#> # A tibble: 21,301 x 6
#> num_prof_math num_took_math num_prof_read num_took_read pct_prof_math
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 24.8 146 25.0 147 0.17
#> 2 1.7 17 1.7 17 0.10
#> 3 3.5 14 3.5 14 0.25
#> 4 3 30 3 30 0.1
#> 5 2.8 28 2.8 28 0.10
#> 6 2.5 25 2.4 24 0.1
#> 7 1.55 62 1.55 62 0.025
#> 8 2.1 21 2.2 22 0.1
#> 9 2.3 23 2.3 23 0.10
#> 10 1.9 19 1.9 19 0.10
#> # ... with 21,291 more rows, and 1 more variable: pct_prof_read <dbl>

37 / 72

Solutions for exercise using mutate()

2. Now using the code for question 1, filter schools where at least 50% of students
are proficient in math & reading.

school_v2 %>%
select(num_prof_math, num_took_math, num_prof_read, num_took_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math,

pct_prof_read = num_prof_read/num_took_read) %>%
filter(pct_prof_math >= 0.5 & pct_prof_read >= 0.5)

#> # A tibble: 7,760 x 6
#> num_prof_math num_took_math num_prof_read num_took_read pct_prof_math
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 135. 260 149. 261 0.520
#> 2 299. 475 418 475 0.63
#> 3 213. 410 332. 410 0.52
#> 4 54.6 105 96.6 105 0.52
#> 5 111. 121 118. 121 0.92
#> 6 1057. 1994 1477. 2204 0.530
#> 7 100. 103 125. 128 0.975
#> 8 56.4 99 84.4 148 0.570
#> 9 445. 586 392. 594 0.76
#> 10 56.0 59 53.1 61 0.95
#> # ... with 7,750 more rows, and 1 more variable: pct_prof_read <dbl>

38 / 72

Solutions for exercise using mutate()

3. Count the number of schools from question 2.
school_v2 %>%

select(num_prof_math, num_took_math, num_prof_read, num_took_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math,

pct_prof_read = num_prof_read/num_took_read) %>%
filter(pct_prof_math >= 0.5 & pct_prof_read >= 0.5) %>%
count()

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 7760

39 / 72

Solutions for exercise using mutate()

4. Using school_v2 , using mutate() combined with is.na() create a
dichotomous indicator variable med_inc_na that identifies whether med_inc is
missing (NA) or not. And then use syntax count(var_name) to create
frequency table of variable med_inc_na . How many observations are missing?

school_v2 %>%
mutate(med_inc_na = is.na(med_inc)) %>%
count(med_inc_na)

#> # A tibble: 2 x 2
#> med_inc_na n
#> <lgl> <int>
#> 1 FALSE 20677
#> 2 TRUE 624

40 / 72

Using if_else() function within mutate()

41 / 72

Using if_else() function within mutate()
Description

▶ if logical condition TRUE , assign a value; if logical condition FALSE
assign a value

Usage (i.e., syntax)

▶ if_else(logical condition, true, false, missing = NULL)

Arguments
▶ logical condition : a condition that evaluates to TRUE or FALSE
▶ true : value to assign if condition TRUE
▶ false : value to assign if condition FALSE
▶ missing : value to assign to rows that have value NA for condition

▶ default is missing = NULL ; means that if condition is NA , then new_var == NA
▶ But can assign different values to NA s, e.g., missing = -9

Value
▶ “Where condition is TRUE, the matching value from true, where it’s FALSE, the

matching value from false, otherwise NA.”
▶ Unless otherwise specified, NA s in “input” var(s) assigned NA in “output var”

Example: Create 0/1 indicator of whether got at least one visit from Berkeley
school_v2 %>%

mutate(got_visit_berkeley = if_else(visits_by_berkeley>0,1,0)) %>%
count(got_visit_berkeley) 42 / 72

if_else() within mutate() to create 0/1 indicator variables

We often create dichotomous (0/1) indicator variables of whether something
happened (or whether something is TRUE)

▶ Variables that are of substantive interest to project
▶ e.g., did student graduate from college

▶ Variables that help you investigate data, check quality
▶ e.g., indicator of whether an observation is missing/non-missing for a particular variable

43 / 72

Using if_else() within mutate()

Task
▶ Create 0/1 indicator if school has median income greater than $100,000

Usually a good idea to investigate “input” variables before creating analysis vars
str(school_v2$med_inc) # investigate variable type
school_v2 %>% count(med_inc) # frequency count, but this isn't very helpful

school_v2 %>% filter(is.na(med_inc)) %>% count(med_inc)
school_v2 %>% filter(is.na(med_inc)) %>% count()
shows number of obs w/ missing med_inc

Create variable
school_v2 %>% select(med_inc) %>%

mutate(inc_gt_100k= if_else(med_inc>100000,1,0)) %>%
count(inc_gt_100k) # note how NA values of med_inc treated

#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

44 / 72

Using if_else() within mutate()
Task:

▶ Create 0/1 indicator if school has median income greater than $100,000.

This time, let’s experiment with the missing argument of if_else()

#what we wrote before
school_v2 %>% select(med_inc) %>%

mutate(inc_gt_100k= if_else(med_inc>100000,1,0)) %>%
count(inc_gt_100k)

#manually write out the default value for `missing`
school_v2 %>% select(med_inc) %>%

mutate(inc_gt_100k= if_else(med_inc>100000,1,0, missing = NULL)) %>%
count(inc_gt_100k) # note how NA values of med_inc treated

school_v2 %>% select(med_inc) %>%
mutate(inc_gt_100k= if_else(med_inc>100000,1,0, missing = NA_real_)) %>%
count(inc_gt_100k) # note how NA values of med_inc treated

NA can be coerced to any other vector type except raw:
NA_integer_, NA_real_, NA_complex_ and NA_character_

Here we give missing values in condition the value of -9 in new variable
school_v2 %>% select(med_inc) %>%

mutate(inc_gt_100k= if_else(med_inc>100000,1,0, missing = -9)) %>%
count(inc_gt_100k)

45 / 72

Using if_else() function within mutate()

Task
▶ Create 0/1 indicator variable nonmiss_math which indicates whether school has

non-missing values for the variable num_took_math
▶ note: num_took_math refers to number of students at school that took state math

proficiency test

Usually a good to investigate “input” variables before creating analysis vars
school_v2 %>% count(num_took_math) # this isn't very helpful
school_v2 %>% filter(is.na(num_took_math)) %>% count(num_took_math) # shows number of obs w/ missing med_inc

Create variable
school_v2 %>% select(num_took_math) %>%

mutate(nonmiss_math= if_else(!is.na(num_took_math),1,0)) %>%
count(nonmiss_math) # note how NA values treated

#> # A tibble: 2 x 2
#> nonmiss_math n
#> <dbl> <int>
#> 1 0 4103
#> 2 1 17198

46 / 72

Student exercises if_else()

1. Using the object school_v2 , create 0/1 indicator variable in_state_berkeley
that equals 1 if the high school is in the same state as UC Berkeley (i.e.,
state_code=="CA").

2. Create 0/1 indicator berkeley_and_irvine of whether a school got at least one
visit from UC Berkeley AND from UC Irvine.

3. Create 0/1 indicator berkeley_or_irvine of whether a school got at least one
visit from UC Berkeley OR from UC Irvine.

47 / 72

Exercise if_else() solutions

1. Using the object school_v2 , create 0/1 indicator variable in_state_berkeley
that equals 1 if the high school is in the same state as UC Berkeley (i.e.,
state_code=="CA").

str(school_v2$state_code) # investigate input variable
school_v2 %>% filter(is.na(state_code)) %>% count() # investigate input var

#Create var
school_v2 %>% mutate(in_state_berkeley=if_else(state_code=="CA",1,0)) %>%

count(in_state_berkeley)

48 / 72

Exercise if_else() solutions

2. Create 0/1 indicator berkeley_and_irvine of whether a school got at least one
visit from UC Berkeley AND from UC Irvine.

#investigate input vars
school_v2 %>% select(visits_by_berkeley, visits_by_irvine) %>% str()
school_v2 %>% filter(is.na(visits_by_berkeley)) %>% count()
school_v2 %>% filter(is.na(visits_by_irvine)) %>% count()

#create variable
school_v2 %>%

mutate(berkeley_and_irvine=if_else(visits_by_berkeley>0
& visits_by_irvine>0,1,0)) %>%

count(berkeley_and_irvine)

49 / 72

Exercise if_else() solutions

3. Create 0/1 indicator berkeley_or_irvine of whether a school got at least one
visit from UC Berkeley OR from UC Irvine.

school_v2 %>%
mutate(berkeley_or_irvine=if_else(visits_by_berkeley>0 | visits_by_irvine>0,1,0)) %>%
count(berkeley_or_irvine)

50 / 72

Using recode() function within mutate()

51 / 72

Using recode() function within mutate()
Description: Recode values of a variable
Usage (i.e., syntax)

▶ recode(.x, …, .default = NULL, .missing = NULL)
Arguments [see help file for further details]

▶ .x A vector (e.g., variable) to modify
▶ ... Specifications for recode, of form current_value = new_recoded_value
▶ .default : If supplied, all values not otherwise matched given this value.
▶ .missing : If supplied, any missing values in .x replaced by this value.

Example: Using data frame wwlist , create new 0/1 indicator public_school from
variable school_type

str(wwlist$school_type)
wwlist %>% count(school_type)

wwlist_temp <- wwlist %>% select(school_type) %>%
mutate(public_school = recode(school_type,"public" = 1, "private" = 0))

wwlist_temp %>% head(n=10)
str(wwlist_temp$public_school) # note: numeric variable
wwlist_temp %>% count(public_school) # note the NAs
rm(wwlist_temp)

52 / 72

Using recode() function within mutate()
Recoding school_type could have been accomplished using if_else()

▶ Use recode() when new variable has more than two categories

Task: Create school_catv2 based on school_category with these categories:

▶ “regular”; “alternative”; “special”; “vocational”
Investigate input var
str(wwlist$school_category) # character variable
wwlist %>% count(school_category)

Recode
wwlist_temp <- wwlist %>% select(school_category) %>%

mutate(school_catv2 = recode(school_category,
"Alternative Education School" = "alternative",
"Alternative/other" = "alternative",
"Regular elementary or secondary" = "regular",
"Regular School" = "regular",
"Special Education School" = "special",
"Special program emphasis" = "special",
"Vocational Education School" = "vocational")

)
str(wwlist_temp$school_catv2) # character variable created
wwlist_temp %>% count(school_catv2)
rm(wwlist_temp)

53 / 72

Using recode() within mutate()

Task: Create school_catv2 based on school_category with these categories:

▶ “regular”; “alternative”; “special”; “vocational”
▶ This time use the .missing argument to recode NAs to “unknown”

wwlist_temp <- wwlist %>% select(school_category) %>%
mutate(school_catv2 = recode(school_category,

"Alternative Education School" = "alternative",
"Alternative/other" = "alternative",
"Regular elementary or secondary" = "regular",
"Regular School" = "regular",
"Special Education School" = "special",
"Special program emphasis" = "special",
"Vocational Education School" = "vocational",
.missing = "unknown")

)
str(wwlist_temp$school_catv2)
wwlist_temp %>% count(school_catv2)
wwlist %>% count(school_category)
rm(wwlist_temp)

54 / 72

Using recode() within mutate()

Task: Create school_catv2 based on school_category with these categories:

▶ “regular”; “alternative”; “special”; “vocational”
▶ This time use the .default argument to assign the value “regular”

wwlist_temp <- wwlist %>% select(school_category) %>%
mutate(school_catv2 = recode(school_category,

"Alternative Education School" = "alternative",
"Alternative/other" = "alternative",
"Special Education School" = "special",
"Special program emphasis" = "special",
"Vocational Education School" = "vocational",
.default = "regular")

)
str(wwlist_temp$school_catv2)
wwlist_temp %>% count(school_catv2)
wwlist %>% count(school_category)
rm(wwlist_temp)

55 / 72

Using recode() within mutate()

Task: Create school_catv2 based on school_category with these categories:

▶ This time create a numeric variable rather than character:
▶ 1 for “regular”; 2 for “alternative”; 3 for “special”; 4 for “vocational”

wwlist_temp <- wwlist %>% select(school_category) %>%
mutate(school_catv2 = recode(school_category,

"Alternative Education School" = 2,
"Alternative/other" = 2,
"Regular elementary or secondary" = 1,
"Regular School" = 1,
"Special Education School" = 3,
"Special program emphasis" = 3,
"Vocational Education School" = 4)

)
str(wwlist_temp$school_catv2) # note: numeric variable now
wwlist_temp %>% count(school_catv2)
wwlist %>% count(school_category)
rm(wwlist_temp)

56 / 72

Student exercise using recode() within mutate()

load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_event_somevars.RData"))
names(df_event)

1. Using object df_event , assign new object df_event_temp and a numeric
variable create event_typev2 based on event_type with these categories:

▶ 1 for “2yr college”; 2 for “4yr college”; 3 for “other”; 4 for “private hs”; 5 for
“public hs”

2. This time use the .default argument to assign the value 5 for “public hs”

57 / 72

Exercise using recode() within mutate() solutions

Check input variable
names(df_event)
str(df_event$event_type)
df_event %>% count(event_type)

58 / 72

Exercise using recode() within mutate() solutions

1. Using object df_event , assign new object df_event_temp and create a
numeric variable event_typev2 based on event_type with these categories:

▶ 1 for “2yr college”; 2 for “4yr college”; 3 for “other”; 4 for “private hs”; 5 for
“public hs”

df_event_temp <- df_event %>%
select(event_type) %>%
mutate(event_typev2 = recode(event_type,

"2yr college" = 1,
"4yr college" = 2,
"other" = 3,
"private hs" = 4,
"public hs" = 5)

)
str(df_event_temp$event_typev2)
df_event_temp %>% count(event_typev2)
df_event %>% count(event_type)

59 / 72

Exercise using recode() within mutate() solutions

2. This time assign the value use the .default argument to assign the value 5
for “public hs”

df_event_temp <- df_event %>% select(event_type) %>%
mutate(event_typev2 = recode(event_type,

"2yr college" = 1,
"4yr college" = 2,
"other" = 3,
"private hs" = 4,
.default = 5)

)
str(df_event_temp$event_typev2)
df_event_temp %>% count(event_typev2)
df_event %>% count(event_type)

60 / 72

Using case_when() function within mutate()

61 / 72

Using case_when() function within mutate()
case_when() useful for creating variable that is a function of multiple “input”

variables
Usage (i.e., syntax): case_when(...)

Arguments [from help file; see help file for more details]
▶ ... : A sequence of two-sided formulas.

▶ The left hand side (LHS) determines which values match this case.
▶ LHS must evaluate to a logical vector.

▶ The right hand side (RHS) provides the replacement value.

Example task: Using data frame wwlist and input vars state and firstgen ,
create a 4-category var with following categories:

▶ “instate_firstgen”; “instate_nonfirstgen”; “outstate_firstgen”;
“outstate_nonfirstgen”

wwlist_temp <- wwlist %>% select(state,firstgen) %>%
mutate(state_gen = case_when(

state == "WA" & firstgen =="Y" ~ "instate_firstgen",
state == "WA" & firstgen =="N" ~ "instate_nonfirstgen",
state != "WA" & firstgen =="Y" ~ "outstate_firstgen",
state != "WA" & firstgen =="N" ~ "outstate_nonfirstgen")

)
str(wwlist_temp$state_gen)
wwlist_temp %>% count(state_gen)

62 / 72

Using case_when() function within mutate()
Task: Using data frame wwlist and input vars state and firstgen , create a
4-category var
Let’s take a closer look at how values of inputs are coded into values of outputs
wwlist %>% select(state,firstgen) %>% str()
count(wwlist,state)
count(wwlist,firstgen)

Create variable
wwlist_temp <- wwlist %>% select(state,firstgen) %>%

mutate(state_gen = case_when(
state == "WA" & firstgen =="Y" ~ "instate_firstgen",
state == "WA" & firstgen =="N" ~ "instate_nonfirstgen",
state != "WA" & firstgen =="Y" ~ "outstate_firstgen",
state != "WA" & firstgen =="N" ~ "outstate_nonfirstgen")

)

Compare values of input vars to value of output var
wwlist_temp %>% count(state_gen)
wwlist_temp %>% filter(is.na(state)) %>% count(state_gen)
wwlist_temp %>% filter(is.na(firstgen)) %>% count(state_gen)
wwlist_temp %>% filter(is.na(firstgen) | is.na(state)) %>% count(state_gen)

Take-away: by default var created by case_when() equals NA for obs where one of
the inputs equals NA

63 / 72

Student exercise using case_when() within mutate()

1. Using the object school_v2 and input vars school_type , and state_code ,
create a 4-category var state_type with following categories:

▶ “instate_public”; “instate_private”; “outstate_public”; “outstate_private”
▶ Note: We are referring to CA as in-state for this example

64 / 72

Exercise using case_when() within mutate() solution

Investigate
school_v2 %>% select(state_code,school_type) %>% str()
count(school_v2,state_code)
school_v2 %>% filter(is.na(state_code)) %>% count()

count(school_v2,school_type)
school_v2 %>% filter(is.na(school_type)) %>% count()

65 / 72

Exercise using case_when() within mutate() solution

1. Using the object school_v2 and input vars school_type , and state_code ,
create a 4-category var state_type with following categories:

▶ “instate_public”; “instate_private”; “outstate_public”; “outstate_private”
school_v2_temp <- school_v2 %>% select(state_code,school_type) %>%

mutate(state_type = case_when(
state_code == "CA" & school_type == "public" ~ "instate_public",
state_code == "CA" & school_type == "private" ~ "instate_private",
state_code != "CA" & school_type == "public" ~ "outstate_public",
state_code != "CA" & school_type == "private" ~ "outstate_private")

)

school_v2_temp %>% count(state_type)
#> # A tibble: 4 x 2
#> state_type n
#> <chr> <int>
#> 1 instate_private 366
#> 2 instate_public 1404
#> 3 outstate_private 3456
#> 4 outstate_public 16075
#school_v2_temp %>% filter(is.na(state_code)) %>% count(state_type) #no missing
#school_v2_temp %>% filter(is.na(school_type)) %>% count(state_type) #no missing

66 / 72

Base R appraoch to creating new variables

67 / 72

Base R approach to creating new variables
Create new variables using assignment operator <- and subsetting operators [] and
$ to create new variables and set conditions of the input variables

Pseudo syntax: df$newvar <- ...

▶ where ... argument is expression(s)/calculation(s) used to create new variables
▶ expressions can include subsetting operators and/or other base R functions

Task: Create measure of percent of students on free-reduced lunch
base R approach
school_v2_temp<- school_v2 #create copy of dataset; not necessary
school_v2_temp$pct_fr_lunch <-

school_v2_temp$num_fr_lunch/school_v2_temp$total_students

#investigate variable you created
str(school_v2_temp$pct_fr_lunch)
#> num [1:21301] 0.723 1 0.967 0.93 1 ...
school_v2_temp$pct_fr_lunch[1:5] # print first 5 obs
#> [1] 0.7225549 1.0000000 0.9666667 0.9303483 1.0000000

tidyverse approach (with pipes)
school_v2_temp <- school_v2 %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students)

68 / 72

Base R approach to creating new variables

If creating new variable based on the condition/values of input variables, basically the
tidyverse equivalent of mutate() with if_else() or recode()

▶ Pseudo syntax: df$newvar[logical condition]<- new value
▶ logical condition : a condition that evaluates to TRUE or FALSE

69 / 72

Base R approach to creating new variables
Task: Create 0/1 indicator if school has median income greater than $100k
tidyverse approach (using pipes)
school_v2_temp %>% select(med_inc) %>%

mutate(inc_gt_100k= if_else(med_inc>100000,1,0)) %>%
count(inc_gt_100k) # note how NA values of med_inc treated

#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

Base R approach
school_v2_temp$inc_gt_100k<-NA #initialize an empty column with NAs

otherwise you'll get warning
school_v2_temp$inc_gt_100k[school_v2_temp$med_inc>100000] <- 1
school_v2_temp$inc_gt_100k[school_v2_temp$med_inc<=100000] <- 0
count(school_v2_temp, inc_gt_100k)
#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

70 / 72

Base R approach to creating new variables
Task: Using data frame wwlist and input vars state and firstgen , create a
4-category var with following categories:

▶ “instate_firstgen”; “instate_nonfirstgen”; “outstate_firstgen”;
“outstate_nonfirstgen”

tidyverse approach (using pipes)
wwlist_temp <- wwlist %>%

mutate(state_gen = case_when(
state == "WA" & firstgen =="Y" ~ "instate_firstgen",
state == "WA" & firstgen =="N" ~ "instate_nonfirstgen",
state != "WA" & firstgen =="Y" ~ "outstate_firstgen",
state != "WA" & firstgen =="N" ~ "outstate_nonfirstgen")

)
str(wwlist_temp$state_gen)
#> chr [1:268396] NA "instate_nonfirstgen" "instate_nonfirstgen" ...
wwlist_temp %>% count(state_gen)
#> # A tibble: 5 x 2
#> state_gen n
#> <chr> <int>
#> 1 instate_firstgen 32428
#> 2 instate_nonfirstgen 58646
#> 3 outstate_firstgen 32606
#> 4 outstate_nonfirstgen 134616
#> 5 <NA> 10100

71 / 72

Base R approach to creating new variables
Task: Using wwlist and input vars state and firstgen , create a 4-category var

base R approach
wwlist_temp <- wwlist

wwlist_temp$state_gen <- NA
wwlist_temp$state_gen[wwlist_temp$state == "WA"

& wwlist_temp$firstgen =="Y"] <- "instate_firstgen"
wwlist_temp$state_gen[wwlist_temp$state == "WA"

& wwlist_temp$firstgen =="N"] <- "instate_nonfirstgen"
wwlist_temp$state_gen[wwlist_temp$state != "WA"

& wwlist_temp$firstgen =="Y"] <- "outstate_firstgen"
wwlist_temp$state_gen[wwlist_temp$state != "WA"

& wwlist_temp$firstgen =="N"] <- "outstate_nonfirstgen"

str(wwlist_temp$state_gen)
#> chr [1:268396] NA "instate_nonfirstgen" "instate_nonfirstgen" ...
count(wwlist_temp, state_gen)
#> # A tibble: 5 x 2
#> state_gen n
#> <chr> <int>
#> 1 instate_firstgen 32428
#> 2 instate_nonfirstgen 58646
#> 3 outstate_firstgen 32606
#> 4 outstate_nonfirstgen 134616
#> 5 <NA> 10100

72 / 72

	Introduction
	Data for lecture

	Pipes
	Creating variables using mutate (tidyverse approach)
	Introduce mutate() function
	Using if_else() function within mutate()
	Using recode() function within mutate()
	Using case_when() function within mutate()

	Base R appraoch to creating new variables

