
Lecture 4: Pipes and variable creation
Managing and Manipulating Data Using R

1 / 64

Introduction

2 / 64

What we will do today

1. Introduction
1.1 Data for lecture

2. Pipes

3. Creating variables using mutate (tidyverse approach)
3.1 Introduce mutate() function
3.2 Using ifelse() function within mutate()
3.3 Using recode() function within mutate()
3.4 Using case_when() function within mutate()

4. Base R appraoch to creating new variables

3 / 64

Libraries we will use today

“Load” the package we will use today (output omitted)
▶ you must run this code chunk

library(tidyverse)

If package not yet installed, then must install before you load. Install in “console”
rather than .Rmd file

▶ Generic syntax: install.packages("package_name")
▶ Install “tidyverse”: install.packages("tidyverse")

Note: when we load package, name of package is not in quotes; but when we install
package, name of package is in quotes:

▶ install.packages("tidyverse")
▶ library(tidyverse)

4 / 64

Data for lecture

5 / 64

Lecture 3 data: prospects purchased by Western Washington U.

The “Student list” business
▶ Universities identify/target “prospects” by buying “student lists” from College

Board/ACT (e.g., $.40 per prospect)
▶ Prospect lists contain contact info (e.g., address, email), academic achievement,

socioeconomic, demographic characteristics
▶ Universities choose which prospects to purchase by filtering on criteria like

zip-code, GPA, test score range, etc.
#load prospect list data
load(url("https://github.com/ozanj/rclass/raw/master/data/prospect_list/wwlist_merged.RData"))

Object wwlist
▶ De-identified list of prospective students purchased by Western Washington

University from College Board
▶ We collected these data using FOIA request

▶ ASIDE: Become an expert on collecting data via FOIA requests and you will become a
superstar!

6 / 64

Lecture 3 data: prospects purchased by Western Washington U.

Observations on wwlist
▶ each observation represents a prospective student

typeof(wwlist)
#> [1] "list"
dim(wwlist)
#> [1] 268396 41

Variables on wwlist
▶ some vars provide de-identified data on individual prospects

▶ e.g., psat_range , state , sex , ethn_code
▶ some vars provide data about zip-code student lives in

▶ e.g., med_inc , pop_total , pop_black
▶ some vars provide data about school student enrolled in

▶ e.g., fr_lunch is number of students on free/reduced lunch
▶ note: bad merge between prospect-level data and school-level data

names(wwlist)
str(wwlist)

7 / 64

Pipes

8 / 64

What are “pipes”, %>%

Pipes are a means of perfoming multiple steps in a single line of code
▶ Pipes are part of tidyverse suite of packages, not base R
▶ When writing code, the pipe symbol is %>%
▶ Basic flow of using pipes in code:

▶ object %>% some_function %>% some_function, \ldots
▶ Pipes work from left to right:

▶ The object/result from left of %>% pipe symbol is the input of function to the right of
the %>% pipe symbol

▶ In turn, the resulting output becomes the input of the function to the right of the next
%>% pipe symbol

Intuitive mnemonic device for understanding pipes
▶ whenever you see a pipe %>% think of the words “and then…”
▶ Example: wwlist %>% filter(firstgen == "Y")

▶ in words: start with object wwlist and then filter first generation students

9 / 64

Do task with and without pipes

Task:
▶ Using object wwlist print data for “first-generation” prospects

(firstgen == "Y")
filter(wwlist, firstgen == "Y") # without pipes
wwlist %>% filter(firstgen == "Y") # with pipes

Comparing the two approaches:
▶ In the “without pipes” approach, the object is the first argument filter()

function
▶ In the “pipes” approach, you don’t specify the object as the first argument of

filter()
▶ Why? Because %>% “pipes” the object to the left of the %>% operator into the

function to the right of the %>% operator

Main takeaway:
▶ When writing code using pipes, functions to right of %>% pipe operator should

not explicitly name object that is the input to the function.
▶ Rather, object to the left of %>% pipe operator is automatically the input.

10 / 64

More intuition on the pipe operator, %>%

The pipe operator “pipes” (verb) an object from left of %>% operator into the
function to the right of the %>% operator
Example:
str(wwlist) # without pipe

wwlist %>% str() # with pipe

11 / 64

Do task with and without pipes

Task: Using object wwlist , print data for “first-gen” prospects for selected variables
[output omitted]
#Without pipes
select(filter(wwlist, firstgen == "Y"), state, hs_city, sex)
#With pipes
wwlist %>% filter(firstgen == "Y") %>% select(state, hs_city, sex)

Comparing the two approaches:
▶ In the “without pipes” approach, code is written “inside out”

▶ The first step in the task – identifying the object – is the innermost part of code
▶ The last step in task – selecting variables to print – is the outermost part of code

▶ In “pipes” approach the left-to-right order of code matches how we think about
the task

▶ First, we start with an object and then (%>%) we use filter() to isolate first-gen
students and then (%>%) we select which variables to print

Think about what object was “piped” into select() from filter()
wwlist %>% filter(firstgen == "Y") %>% str()

12 / 64

Aside: the count() function [students work on their own]

count() function from dplyr package counts the number of obs by group

Syntax [see help file for full syntax]

▶ count(x,...)

Arguments [see help file for full arguments]
▶ x : an object, often a data frame
▶ ... : variables to group by

Examples of using count()

▶ Without vars in ... argument, counts number of obs in object
count(wwlist)
wwlist %>% count()

▶ With vars in ... argument, counts number of obs per variable value
▶ note: by default, count() always shows NAs [this is good!]

count(wwlist,school_category)
wwlist %>% count(school_category)

13 / 64

Aside: pipe operators and new lines

Often want to insert line breaks to make long line of code more readable
▶ When inserting line breaks, pipe operator %>% should be the last thing before a

line break, not the first thing after a line break
This works
wwlist %>% filter(firstgen == "Y") %>%

select(state, hs_city, sex) %>%
count(sex)

This works too
wwlist %>% filter(firstgen == "Y",

state != "WA") %>%
select(state, hs_city, sex) %>%
count(sex)

This doesn’t work
wwlist %>% filter(firstgen == "Y")

%>% select(state, hs_city, sex)
%>% count(sex)

14 / 64

Do task with and without pipes

Task:
▶ Count the number “first-generation” prospects from the state of Washington

Without pipes
count(filter(wwlist, firstgen == "Y", state == "WA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 32428

With pipes
wwlist %>% filter(firstgen == "Y", state == "WA") %>% count()
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 32428

15 / 64

Do task with and without pipes
Task: frequency table of school_type for non first-gen prospects from WA

without pipes
wwlist_temp <- filter(wwlist, firstgen == "N", state == "WA")
table(wwlist_temp$school_type, useNA = "always")
#>
#> private public <NA>
#> 11 46146 12489
rm(wwlist_temp) # cuz we don't need after creating table

With pipes
wwlist %>% filter(firstgen == "N", state == "WA") %>% count(school_type)
#> # A tibble: 3 x 2
#> school_type n
#> <chr> <int>
#> 1 private 11
#> 2 public 46146
#> 3 <NA> 12489

Comparison of two approaches
▶ without pipes, task requires multiple lines of code (this is quite common)

▶ first line creates object; second line analyzes object
▶ with pipes, task can be completed in one line of code and you aren’t left with

objects you don’t care about
16 / 64

Student exercises with pipes

1. Using object wwlist select the following variables (state, firstgen, ethn_code)
and assign <- them to object wwlist_temp . (ex. wwlist_temp <- wwlist)

2. Using the object you just created wwlist_temp , create a frequency table of
ethn_code for first-gen prospects from California.

3. Bonus: Try doing question 1 and 2 together. Use original object wwlist , but do
not assign to a new object.

Once finished you can rm(wwlist_temp)

17 / 64

Solution to exercises with pipes

1. Using object wwlist select the following variables (state, firstgen, ethn_code)
and assign them to object wwlist_temp

wwlist_temp <- wwlist %>%
select(state, firstgen, ethn_code)

18 / 64

Solution to exercises with pipes

2. Using the object you just created wwlist_temp , create a frequency table of
ethn_code for first-gen prospects from California.

#names(wwlist)
wwlist_temp %>%

filter(firstgen == "Y", state == "CA") %>% count(ethn_code)
#> # A tibble: 10 x 2
#> ethn_code n
#> <chr> <int>
#> 1 american indian or alaska native 4
#> 2 asian or native hawaiian or other pacific islander 86
#> 3 black or african american 10
#> 4 cuban 1
#> 5 mexican/mexican american 643
#> 6 not reported 113
#> 7 other spanish/hispanic 179
#> 8 other-2 or more 4197
#> 9 puerto rican 8
#> 10 white 2933

19 / 64

Solution to exercises with pipes

3. Bonus: Try doing question 1 and 2 together.
wwlist %>%

select(state, firstgen, ethn_code) %>%
filter(firstgen == "Y", state == "CA") %>%
count(ethn_code)

#> # A tibble: 10 x 2
#> ethn_code n
#> <chr> <int>
#> 1 american indian or alaska native 4
#> 2 asian or native hawaiian or other pacific islander 86
#> 3 black or african american 10
#> 4 cuban 1
#> 5 mexican/mexican american 643
#> 6 not reported 113
#> 7 other spanish/hispanic 179
#> 8 other-2 or more 4197
#> 9 puerto rican 8
#> 10 white 2933
#rm(wwlist_temp)

rm(wwlist_temp)

20 / 64

Creating variables using mutate (tidyverse approach)

21 / 64

Our plan for learning how to create new variables

Recall that dplyr package within tidyverse provide a set of functions that can be
described as “verbs”: subsetting, sorting, and transforming

What we’ve done Where we’re going
Subsetting data Transforming data
- select() variables - mutate() creates new variables
- filter() observations - summarize() calculates across rows
Sorting data - group_by() to calculate across rows within groups
- arrange()

Today

▶ we’ll use mutate() to create new variables based on calculations across columns
within a row

Next week
▶ we’ll combine mutate() with summarize() and group_by() to create

variables based on calculations across rows

22 / 64

Create new data frame based on df_school_all

Data frame df_school_all has one obs per US high school and then variables
identifying number of visits by particular universities
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_school_allvars.RData"))
names(df_school_all)
#> [1] "state_code" "school_type" "ncessch"
#> [4] "name" "address" "city"
#> [7] "zip_code" "pct_white" "pct_black"
#> [10] "pct_hispanic" "pct_asian" "pct_amerindian"
#> [13] "pct_other" "num_fr_lunch" "total_students"
#> [16] "num_took_math" "num_prof_math" "num_took_rla"
#> [19] "num_prof_rla" "avgmedian_inc_2564" "latitude"
#> [22] "longitude" "visits_by_196097" "visits_by_186380"
#> [25] "visits_by_215293" "visits_by_201885" "visits_by_181464"
#> [28] "visits_by_139959" "visits_by_218663" "visits_by_100751"
#> [31] "visits_by_199193" "visits_by_110635" "visits_by_110653"
#> [34] "visits_by_126614" "visits_by_155317" "visits_by_106397"
#> [37] "visits_by_149222" "visits_by_166629" "total_visits"
#> [40] "inst_196097" "inst_186380" "inst_215293"
#> [43] "inst_201885" "inst_181464" "inst_139959"
#> [46] "inst_218663" "inst_100751" "inst_199193"
#> [49] "inst_110635" "inst_110653" "inst_126614"
#> [52] "inst_155317" "inst_106397" "inst_149222"
#> [55] "inst_166629"

23 / 64

Create new data frame based on df_school_all
Let’s create new version of this data frame, called school_v2 , which we’ll use to
introduce how to create new variables
school_v2 <- df_school_all %>%

select(-contains("inst_")) %>% # remove vars that start with "inst_"
rename(

visits_by_berkeley = visits_by_110635,
visits_by_boulder = visits_by_126614,
visits_by_bama = visits_by_100751,
visits_by_stonybrook = visits_by_196097,
visits_by_rutgers = visits_by_186380,
visits_by_pitt = visits_by_215293,
visits_by_cinci = visits_by_201885,
visits_by_nebraska = visits_by_181464,
visits_by_georgia = visits_by_139959,
visits_by_scarolina = visits_by_218663,
visits_by_ncstate = visits_by_199193,
visits_by_irvine = visits_by_110653,
visits_by_kansas = visits_by_155317,
visits_by_arkansas = visits_by_106397,
visits_by_sillinois = visits_by_149222,
visits_by_umass = visits_by_166629,
num_took_read = num_took_rla,
num_prof_read = num_prof_rla,
med_inc = avgmedian_inc_2564)

names(school_v2) 24 / 64

Introduce mutate() function

25 / 64

Introduce mutate() function

mutate() is tidyverse approach to creating variables (not Base R approach)

Description of mutate()

▶ creates new columns (variables) that are functions of existing columns
▶ After creating a new variable using mutate() , every row of data is retained
▶ mutate() works best with pipes %>%

Task:
▶ Using data frame school_v2 create new variable that measures the pct of

students on free/reduced lunch (output omitted)
school_sml <- school_v2 %>% # create new dataset with fewer vars; not necessary to do this

select(ncessch, school_type, num_fr_lunch, total_students)

school_sml %>%
mutate(pct_fr_lunch = num_fr_lunch/total_students) # create new var

rm(school_sml)

26 / 64

Syntax for mutate()

Let’s spend a couple minutes looking at help file for mutate()

Usage (i.e., syntax)

▶ mutate(.data,...)

Arguments
▶ .data : a data frame

▶ if using mutate() after pipe operator %>% , then this argument can be omitted
▶ Why? Because data frame object to left of %>% “piped in” to first argument of mutate()

▶ ... : expressions used to create new variables
▶ Can create multiple variables at once

Value
▶ returns an object that contains the original input data frame and new variables

that were created by mutate()

Useful functions (i.e., “helper functions”)

▶ These are standalone functions can be called within mutate()
▶ e.g., if_else() , recode() , case_when()

▶ will show examples of this in subsequent slides

27 / 64

Introduce mutate() function

New variable not retained unless we assign <- it to an object (existing or new)

mutate() without assignment
school_v2 %>% mutate(pct_fr_lunch = num_fr_lunch/total_students)

names(school_v2)

mutate() with assignment
school_v2_temp <- school_v2 %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students)

names(school_v2_temp)
rm(school_v2_temp)

28 / 64

mutate() can create multiple variables at once

mutate() can create multiple variables at once
school_v2 %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students,
pct_prof_math= num_prof_math/num_took_math) %>%

select(num_fr_lunch, total_students, pct_fr_lunch,
num_prof_math, num_took_math, pct_prof_math)

Or we could write code this way:
school_v2 %>%

select(num_fr_lunch, total_students, num_prof_math, num_took_math) %>%
mutate(pct_fr_lunch = num_fr_lunch/total_students,

pct_prof_math= num_prof_math/num_took_math)

29 / 64

Student exercise using mutate()

1. Using the object school_v2 , select the following variables (num_prof_math ,
num_took_math , num_prof_read , num_took_read) and create a measure of

percent proficient in math pct_prof_math and percent proficient in reading
pct_prof_read .

2. Now using the code for question 1, filter schools where at least 50% of students
are proficient in math & reading.

3. If you have time, count the number of schools from question 2.

30 / 64

Solutions for exercise using mutate()
1. Using the object school_v2 , select the following variables (num_prof_math ,

num_took_math , num_prof_read , num_took_read) and create a measure of
percent proficient in math pct_prof_math and percent proficient in reading
pct_prof_read .

school_v2 %>%
select(num_prof_math, num_took_math, num_prof_read, num_took_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math,

pct_prof_read = num_prof_read/num_took_read)
#> # A tibble: 21,301 x 6
#> num_prof_math num_took_math num_prof_read num_took_read pct_prof_math
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 24.8 146 25.0 147 0.17
#> 2 1.7 17 1.7 17 0.10
#> 3 3.5 14 3.5 14 0.25
#> 4 3 30 3 30 0.1
#> 5 2.8 28 2.8 28 0.10
#> 6 2.5 25 2.4 24 0.1
#> 7 1.55 62 1.55 62 0.025
#> 8 2.1 21 2.2 22 0.1
#> 9 2.3 23 2.3 23 0.10
#> 10 1.9 19 1.9 19 0.10
#> # ... with 21,291 more rows, and 1 more variable: pct_prof_read <dbl>

31 / 64

Solutions for exercise using mutate()

2. Now using the code for question 1, filter schools where at least 50% of students
are proficient in math & reading.

school_v2 %>%
select(num_prof_math, num_took_math, num_prof_read, num_took_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math,

pct_prof_read = num_prof_read/num_took_read) %>%
filter(pct_prof_math >= 0.5 & pct_prof_read >= 0.5)

#> # A tibble: 7,760 x 6
#> num_prof_math num_took_math num_prof_read num_took_read pct_prof_math
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 135. 260 149. 261 0.520
#> 2 299. 475 418 475 0.63
#> 3 213. 410 332. 410 0.52
#> 4 54.6 105 96.6 105 0.52
#> 5 111. 121 118. 121 0.92
#> 6 1057. 1994 1477. 2204 0.530
#> 7 100. 103 125. 128 0.975
#> 8 56.4 99 84.4 148 0.570
#> 9 445. 586 392. 594 0.76
#> 10 56.0 59 53.1 61 0.95
#> # ... with 7,750 more rows, and 1 more variable: pct_prof_read <dbl>

32 / 64

Solutions for exercise using mutate()

3. If you have time, count the number of schools from question 2.
school_v2 %>%

select(num_prof_math, num_took_math, num_prof_read, num_took_read) %>%
mutate(pct_prof_math = num_prof_math/num_took_math,

pct_prof_read = num_prof_read/num_took_read) %>%
filter(pct_prof_math >= 0.5 & pct_prof_read >= 0.5) %>%
count()

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 7760

33 / 64

Using ifelse() function within mutate()

34 / 64

Using ifelse() function within mutate()
?if_else

Description
▶ if condition TRUE , assign a value; if condition FALSE assign a value

Usage (i.e., syntax)

▶ if_else(logical condition, true, false, missing = NULL)

Arguments
▶ logical condition : a condition that evaluates to TRUE or FALSE
▶ true : value to assign if condition TRUE
▶ false : value to assign if condition FALSE

Value
▶ “Where condition is TRUE, the matching value from true, where it’s FALSE, the

matching value from false, otherwise NA.”
▶ missing values from “input” var are assigned missing values in “output var”,

unless you specify otherwise
Example: Create 0/1 indicator of whether got at least one visit from Berkeley
school_v2 %>%

mutate(got_visit_berkeley = ifelse(visits_by_berkeley>0,1,0)) %>%
count(got_visit_berkeley)

35 / 64

ifelse() within mutate() to create 0/1 indicator variables

We often create dichotomous (0/1) indicator variables of whether something
happened (or whether something is TRUE)

▶ Variables that are of substantive interest to project
▶ e.g., did student graduate from college

▶ Variables that help you investigate data, check quality
▶ e.g., indicator of whether an observation is missing/non-missing for a particular variable

36 / 64

Using ifelse() within mutate()

Task
▶ Create 0/1 indicator if school has median income greater than $100,000

Usually a good idea to investigate “input” variables before creating analysis vars
str(school_v2$med_inc) # investigate variable type
school_v2 %>% count(med_inc) # frequency count, but this isn't very helpful

school_v2 %>% filter(is.na(med_inc)) %>% count(med_inc)
shows number of obs w/ missing med_inc

Create variable
school_v2 %>% select(med_inc) %>%

mutate(inc_gt_100k= ifelse(med_inc>100000,1,0)) %>%
count(inc_gt_100k) # note how NA values of med_inc treated

#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

37 / 64

Using ifelse() function within mutate()

Task
▶ Create 0/1 indicator variable nonmiss_math which indicates whether school has

non-missing values for the variable num_took_math
▶ note: num_took_math refers to number of students at school that took state math

proficiency test

Usually a good to investigate “input” variables before creating analysis vars
school_v2 %>% count(num_took_math) # this isn't very helpful
school_v2 %>% filter(is.na(num_took_math)) %>% count(num_took_math) # shows number of obs w/ missing med_inc

Create variable
school_v2 %>% select(num_took_math) %>%

mutate(nonmiss_math= ifelse(!is.na(num_took_math),1,0)) %>%
count(nonmiss_math) # note how NA values treated

#> # A tibble: 2 x 2
#> nonmiss_math n
#> <dbl> <int>
#> 1 0 4103
#> 2 1 17198

38 / 64

Student exercises ifelse()

1. Using the object school_v2 , create 0/1 indicator variable in_state_berkeley
that equals 1 if the high school is in the same state as UC Berkeley (i.e.,
state_code=="CA").

2. Create 0/1 indicator berkeley_and_irvine of whether a school got at least one
visit from UC Berkeley AND from UC Irvine.

3. Create 0/1 indicator berkeley_or_irvine of whether a school got at least one
visit from UC Berkeley OR from UC Irvine.

39 / 64

Exercise ifelse() solutions

1. Using the object school_v2 , create 0/1 indicator variable in_state_berkeley
that equals 1 if the high school is in the same state as UC Berkeley (i.e.,
state_code=="CA").

str(school_v2$state_code) # investigate input variable
school_v2 %>% filter(is.na(state_code)) %>% count() # investigate input var

#Create var
school_v2 %>% mutate(in_state_berkeley=ifelse(state_code=="CA",1,0)) %>%

count(in_state_berkeley)

40 / 64

Exercise ifelse() solutions

2. Create 0/1 indicator berkeley_and_irvine of whether a school got at least one
visit from UC Berkeley AND from UC Irvine.

#investigate input vars
school_v2 %>% select(visits_by_berkeley, visits_by_irvine) %>% str()
school_v2 %>% filter(is.na(visits_by_berkeley)) %>% count()
school_v2 %>% filter(is.na(visits_by_irvine)) %>% count()
#create variable
school_v2 %>%

mutate(berkeley_and_irvine=ifelse(visits_by_berkeley>0 & visits_by_irvine>0,1,0)) %>%
count(berkeley_and_irvine)

41 / 64

Exercise ifelse() solutions

3. Create 0/1 indicator berkeley_or_irvine of whether a school got at least one
visit from UC Berkeley OR from UC Irvine.

school_v2 %>%
mutate(berkeley_or_irvine=ifelse(visits_by_berkeley>0 | visits_by_irvine>0,1,0)) %>%
count(berkeley_or_irvine)

42 / 64

Using recode() function within mutate()

43 / 64

Using recode() function within mutate()
Description: Recode values of a variable
Usage (i.e., syntax)

▶ recode(.x, …, .default = NULL, .missing = NULL)
Arguments [see help file for further details]

▶ .x A vector (e.g., variable) to modify
▶ ... Specifications for recode, of form current_value = new_recoded_value
▶ .default : If supplied, all values not otherwise matched given this value.
▶ .missing : If supplied, any missing values in .x replaced by this value.

Example: Using data frame wwlist , create new 0/1 indicator public_school from
variable school_type

str(wwlist$school_type)
wwlist %>% count(school_type)

wwlist_temp <- wwlist %>% select(school_type) %>%
mutate(public_school = recode(school_type,"public" = 1, "private" = 0))

wwlist_temp %>% head(n=10)
str(wwlist_temp$public_school)
wwlist_temp %>% count(public_school)
rm(wwlist_temp)

44 / 64

Using recode() function within mutate()
Recoding school_type could have been accomplished using if_else()

▶ Use recode() when new variable has more than two categories

Task: Create school_catv2 based on school_category with these categories:

▶ “regular”; “alternative”; “special”; “vocational”
Investigate input var
str(wwlist$school_category)
wwlist %>% count(school_category)

Recode
wwlist_temp <- wwlist %>% select(school_category) %>%

mutate(school_catv2 = recode(school_category,
"Alternative Education School" = "alternative",
"Alternative/other" = "alternative",
"Regular elementary or secondary" = "regular",
"Regular School" = "regular",
"Special Education School" = "special",
"Special program emphasis" = "special",
"Vocational Education School" = "vocational")

)
str(wwlist_temp$school_catv2)
wwlist_temp %>% count(school_catv2)
wwlist %>% count(school_category)
rm(wwlist_temp) 45 / 64

Using recode() within mutate() [do in pairs/groups]

Task: Create school_catv2 based on school_category with these categories:

▶ “regular”; “alternative”; “special”; “vocational”
▶ This time use the .missing argument to recode NAs to “unknown”

wwlist_temp <- wwlist %>% select(school_category) %>%
mutate(school_catv2 = recode(school_category,

"Alternative Education School" = "alternative",
"Alternative/other" = "alternative",
"Regular elementary or secondary" = "regular",
"Regular School" = "regular",
"Special Education School" = "special",
"Special program emphasis" = "special",
"Vocational Education School" = "vocational",
.missing = "unknown")

)
str(wwlist_temp$school_catv2)
wwlist_temp %>% count(school_catv2)
wwlist %>% count(school_category)
rm(wwlist_temp)

46 / 64

Using recode() within mutate()

Task: Create school_catv2 based on school_category with these categories:

▶ “regular”; “alternative”; “special”; “vocational”
▶ This time use the .default argument to assign the value “regular”

wwlist_temp <- wwlist %>% select(school_category) %>%
mutate(school_catv2 = recode(school_category,

"Alternative Education School" = "alternative",
"Alternative/other" = "alternative",
"Special Education School" = "special",
"Special program emphasis" = "special",
"Vocational Education School" = "vocational",
.default = "regular")

)
str(wwlist_temp$school_catv2)
wwlist_temp %>% count(school_catv2)
wwlist %>% count(school_category)
rm(wwlist_temp)

47 / 64

Using recode() within mutate()

Task: Create school_catv2 based on school_category with these categories:

▶ This time create a numeric variable rather than character:
▶ 1 for “regular”; 2 for “alternative”; 3 for “special”; 4 for “vocational”

wwlist_temp <- wwlist %>% select(school_category) %>%
mutate(school_catv2 = recode(school_category,

"Alternative Education School" = 2,
"Alternative/other" = 2,
"Regular elementary or secondary" = 1,
"Regular School" = 1,
"Special Education School" = 3,
"Special program emphasis" = 3,
"Vocational Education School" = 4)

)
str(wwlist_temp$school_catv2)
wwlist_temp %>% count(school_catv2)
wwlist %>% count(school_category)
rm(wwlist_temp)

48 / 64

Student exercise using recode() within mutate()

load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_event_somevars.RData"))
names(df_event)

1. Using object df_event , assign new object df_event_temp and create
event_typev2 based on event_type with these categories:
▶ 1 for “2yr college”; 2 for “4yr college”; 3 for “other”; 4 for “private hs”; 5 for

“public hs”
2. This time use the .default argument to assign the value 5 for “public hs”

49 / 64

Exercise using recode() within mutate() solutions

Check input variable
names(df_event)
str(df_event$event_type)
df_event %>% count(event_type)

50 / 64

Exercise using recode() within mutate() solutions

1. Using object df_event , assign new object df_event_temp and create
event_typev2 based on event_type with these categories:
▶ 1 for “2yr college”; 2 for “4yr college”; 3 for “other”; 4 for “private hs”; 5 for

“public hs”
df_event_temp <- df_event %>%

select(event_type) %>%
mutate(event_typev2 = recode(event_type,

"2yr college" = 1,
"4yr college" = 2,
"other" = 3,
"private hs" = 4,
"public hs" = 5)

)
str(df_event_temp$event_typev2)
df_event_temp %>% count(event_typev2)
df_event %>% count(event_type)

51 / 64

Exercise using recode() within mutate() solutions

2. This time use the .default argument to assign the value 5 for “public hs”
df_event %>% select(event_type) %>%

mutate(event_typev2 = recode(event_type,
"2yr college" = 1,
"4yr college" = 2,
"other" = 3,
"private hs" = 4,
.default = 5)

)
str(df_event_temp$event_typev2)
df_event_temp %>% count(event_typev2)
df_event %>% count(event_type)

52 / 64

Using case_when() function within mutate()

53 / 64

Using case_when() function within mutate()
Description Useful when the variable you want to create is more complicated than
variables that can be created using ifelse() or recode()

▶ Useful when new variable is a function of multiple “input” variables

Usage (i.e., syntax): case_when(...)

Arguments [from help file; see help file for more details]
▶ ... : A sequence of two-sided formulas.

▶ The left hand side (LHS) determines which values match this case.
▶ LHS must evaluate to a logical vector.

▶ The right hand side (RHS) provides the replacement value.

Example task: Using data frame wwlist and input vars state and firstgen ,
create a 4-category var with following categories:

▶ “instate_firstgen”; “instate_nonfirstgen”; “outstate_firstgen”;
“outstate_nonfirstgen”

wwlist_temp <- wwlist %>% select(state,firstgen) %>%
mutate(state_gen = case_when(

state == "WA" & firstgen =="Y" ~ "instate_firstgen",
state == "WA" & firstgen =="N" ~ "instate_nonfirstgen",
state != "WA" & firstgen =="Y" ~ "outstate_firstgen",
state != "WA" & firstgen =="N" ~ "outstate_nonfirstgen")

)
str(wwlist_temp$state_gen)
wwlist_temp %>% count(state_gen)

54 / 64

Using case_when() function within mutate()
Task: Using data frame wwlist and input vars state and firstgen , create a
4-category var with following categories:

▶ “instate_firstgen”; “instate_nonfirstgen”; “outstate_firstgen”;
“outstate_nonfirstgen”

Let’s take a closer look at how values of inputs are coded into values of outputs
wwlist %>% select(state,firstgen) %>% str()
count(wwlist,state)
count(wwlist,firstgen)

wwlist_temp <- wwlist %>% select(state,firstgen) %>%
mutate(state_gen = case_when(

state == "WA" & firstgen =="Y" ~ "instate_firstgen",
state == "WA" & firstgen =="N" ~ "instate_nonfirstgen",
state != "WA" & firstgen =="Y" ~ "outstate_firstgen",
state != "WA" & firstgen =="N" ~ "outstate_nonfirstgen")

)

wwlist_temp %>% count(state_gen)
wwlist_temp %>% filter(is.na(state)) %>% count(state_gen)
wwlist_temp %>% filter(is.na(firstgen)) %>% count(state_gen)

Take-away: by default var created by case_when() equals NA for obs where one of
the inputs equals NA

55 / 64

Student exercise using case_when() within mutate()

1. Using the object school_v2 and input vars school_type , and state_code ,
create a 4-category var state_type with following categories:

▶ “instate_public”; “instate_private”; “outstate_public”; “outstate_private”
▶ Note: We are referring to CA as in-state for this example

56 / 64

Exercise using case_when() within mutate() solution

Investigate
school_v2 %>% select(state_code,school_type) %>% str()
count(school_v2,state_code)
school_v2 %>% filter(is.na(state_code)) %>% count()

count(school_v2,school_type)
school_v2 %>% filter(is.na(school_type)) %>% count()

57 / 64

Exercise using case_when() within mutate() solution

1. Using the object school_v2 and input vars school_type , and state_code ,
create a 4-category var state_type with following categories:

▶ “instate_public”; “instate_private”; “outstate_public”; “outstate_private”
school_v2_temp <- school_v2 %>% select(state_code,school_type) %>%

mutate(state_type = case_when(
state_code == "CA" & school_type == "public" ~ "instate_public",
state_code == "CA" & school_type == "private" ~ "instate_private",
state_code != "CA" & school_type == "public" ~ "outstate_public",
state_code != "CA" & school_type == "private" ~ "outstate_private")

)

school_v2_temp %>% count(state_type)
#> # A tibble: 4 x 2
#> state_type n
#> <chr> <int>
#> 1 instate_private 366
#> 2 instate_public 1404
#> 3 outstate_private 3456
#> 4 outstate_public 16075
#school_v2_temp %>% filter(is.na(state_code)) %>% count(state_type) #no missing
#school_v2_temp %>% filter(is.na(school_type)) %>% count(state_type) #no missing

58 / 64

Base R appraoch to creating new variables

59 / 64

Base R approach to creating new variables

Subsetting operators [] and $ are used to create new variables and set conditions
of the input variables

If creating new variable based on calculation of input variables, basically the tidyverse
equivalent of mutate() without ifelse() or recode()

▶ Sudo syntax: df$newvar <- ...
▶ where … argument is expression(s)/calculation(s) used to create new variables

Task: Create measure of percent of students on free-reduced lunch
base R approach
school_v2_temp<- school_v2 #create copy of dataset; not necessary
school_v2_temp$pct_fr_lunch <-

school_v2_temp$num_fr_lunch/school_v2_temp$total_students

tidyverse approach (with pipes)
school_v2_temp <- school_v2 %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students)

60 / 64

Base R approach to creating new variables

If creating new variable based on the condition/values of input variables, basically the
tidyverse equivalent of mutate() with ifelse() or recode()

▶ Sudo syntax: df$newvar[logical condition]<- new value
▶ logical condition : a condition that evaluates to TRUE or FALSE

61 / 64

Base R approach to creating new variables
Task: Create 0/1 indicator if school has median income greater than $100k
tidyverse approach (using pipes)
school_v2_temp %>% select(med_inc) %>%

mutate(inc_gt_100k= ifelse(med_inc>100000,1,0)) %>%
count(inc_gt_100k) # note how NA values of med_inc treated

#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

Base R approach
school_v2_temp$inc_gt_100k<-NA #initialize an empty column with NAs

otherwise you'll get warning
school_v2_temp$inc_gt_100k[school_v2_temp$med_inc>100000] <- 1
school_v2_temp$inc_gt_100k[school_v2_temp$med_inc<=100000] <- 0
count(school_v2_temp, inc_gt_100k)
#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

62 / 64

Base R approach to creating new variables
Task: Using data frame wwlist and input vars state and firstgen , create a
4-category var with following categories:

▶ “instate_firstgen”; “instate_nonfirstgen”; “outstate_firstgen”;
“outstate_nonfirstgen”

tidyverse approach (using pipes)
wwlist_temp <- wwlist %>%

mutate(state_gen = case_when(
state == "WA" & firstgen =="Y" ~ "instate_firstgen",
state == "WA" & firstgen =="N" ~ "instate_nonfirstgen",
state != "WA" & firstgen =="Y" ~ "outstate_firstgen",
state != "WA" & firstgen =="N" ~ "outstate_nonfirstgen")

)
str(wwlist_temp$state_gen)
#> chr [1:268396] NA "instate_nonfirstgen" "instate_nonfirstgen" ...
wwlist_temp %>% count(state_gen)
#> # A tibble: 5 x 2
#> state_gen n
#> <chr> <int>
#> 1 instate_firstgen 32428
#> 2 instate_nonfirstgen 58646
#> 3 outstate_firstgen 32606
#> 4 outstate_nonfirstgen 134616
#> 5 <NA> 10100

63 / 64

Base R approach to creating new variables
Task: Using data frame wwlist and input vars state and firstgen , create a
4-category var with following categories:

▶ “instate_firstgen”; “instate_nonfirstgen”; “outstate_firstgen”;
“outstate_nonfirstgen”

base R approach
wwlist_temp <- wwlist

wwlist_temp$state_gen <- NA
wwlist_temp$state_gen[wwlist_temp$state == "WA" & wwlist_temp$firstgen =="Y"] <- "instate_firstgen"
wwlist_temp$state_gen[wwlist_temp$state == "WA" & wwlist_temp$firstgen =="N"] <- "instate_nonfirstgen"
wwlist_temp$state_gen[wwlist_temp$state != "WA" & wwlist_temp$firstgen =="Y"] <- "outstate_firstgen"
wwlist_temp$state_gen[wwlist_temp$state != "WA" & wwlist_temp$firstgen =="N"] <- "outstate_nonfirstgen"

str(wwlist_temp$state_gen)
#> chr [1:268396] NA "instate_nonfirstgen" "instate_nonfirstgen" ...
count(wwlist_temp, state_gen)
#> # A tibble: 5 x 2
#> state_gen n
#> <chr> <int>
#> 1 instate_firstgen 32428
#> 2 instate_nonfirstgen 58646
#> 3 outstate_firstgen 32606
#> 4 outstate_nonfirstgen 134616
#> 5 <NA> 10100

64 / 64

	Introduction
	Data for lecture

	Pipes
	Creating variables using mutate (tidyverse approach)
	Introduce mutate() function
	Using ifelse() function within mutate()
	Using recode() function within mutate()
	Using case_when() function within mutate()

	Base R appraoch to creating new variables

