
Lecture 3: Investigating data patterns using Base R
Managing and Manipulating Data Using R

1 / 59

Introduction

2 / 59

What we will do today

1. Introduction

2. Subsetting using subset() function

3. Subsetting using subsetting operators
3.1 Subset atomic vectors using []
3.2 Subsetting lists/data frames using []
3.3 Subsetting lists/data frames using [[]] and $
3.4 Subsetting data frames with [] combined with $

4. Sorting data

3 / 59

Load libraries and .Rdata data frames we will use today
Data on off-campus recruiting events by public universities

▶ Data frame object df_event
▶ One observation per university, recruiting event

▶ Data frame object df_school
▶ One observation per high school (visited and non-visited)

rm(list = ls()) # remove all objects in current environment

library(tidyverse) #load tidyverse library
#> -- Attaching packages -- tidyverse 1.2.1 --
#> v ggplot2 3.2.1 v purrr 0.3.2
#> v tibble 2.1.3 v dplyr 0.8.3
#> v tidyr 1.0.0 v stringr 1.4.0
#> v readr 1.3.1 v forcats 0.4.0
#> -- Conflicts --- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()

#load dataset with one obs per recruiting event
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_event_somevars.RData"))

#load dataset with one obs per high school
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_school_somevars.RData"))

4 / 59

Why learn to “wrangle” data both via tidyverse and base R?

Tidyverse has become the leading way many people clean and manipulate data in R
▶ these packages make data wrangling simpler than core base R commands (most

times)
▶ tidyverse commands can be more more efficient (less lines of code, consolidate

steps)

But you will inevitably run into edge cases where tidyverse commands don’t work the
way you expect them to and you’ll need to use base R

It’s good to have a basic foundation on both approaches and then decide which you
prefer for most data tasks!

▶ this class will primarily use tidyverse approach
▶ future data science seminar will provide examples of edge cases where base R is

necessary

5 / 59

Tidyverse vs. base R functions

tidyverse base R operation

select() subset() OR [] + c() “extract” variables
filter() subset() OR [] + $ “extract” observations
arrange() order() sorting data

6 / 59

Subsetting using subset() function

7 / 59

Subset function

The subset() is a base R function and easiest way to “filter” observations

▶ can also used subset() to select variables
▶ Like tidyverse filter() , subset() can be combined with:

▶ with assignment (<-) to create new objects
▶ with count() to count number of observations that satisfy criteria

?subset

Syntax [when object is data frame]: subset(x, subset, select, drop = FALSE)
▶ x is object to be subset
▶ subset is the logical expression(s) (evaluates to TRUE/FALSE) indicating

elements (rows) to keep
▶ select indicates columns to select from data frame (if argument is not used

default will keep all columns)
▶ drop to preserve original dimensions [SKIP]

▶ cane take values TRUE or FALSE ; default is FALSE
▶ only need to worry about dataframes when subset output is single column

8 / 59

Subset function, examples

Using df_school , show all public high schools that are at least 50% Latinx
(var= pct_hispanic) student enrollment in California

▶ Using tidyverse filter() [output omitted]
filter(df_school, school_type == "public", pct_hispanic >= 50,

state_code == "CA")

filter(df_school, school_type == "public" & pct_hispanic >= 50
& state_code == "CA") # same as above

▶ Using base R, subset() [output omitted]
#public high schools with at least 50% Latinx student enrollment
subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA")

9 / 59

Subset function, examples
Count all CA public high schools that are at least 50% Latinx

▶ Can wrap filter() or subset() within count() to count number of
observations that satisfy criteria

#filter()
count(filter(df_school, school_type == "public", pct_hispanic >= 50,

state_code == "CA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 713
count(filter(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 713

#subset()
count(subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 713

10 / 59

Subset function, examples
Note that both filter() and subset() identify the number of observations for
which the condition is TRUE
count(filter(df_school, TRUE))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 21301
count(subset(df_school, TRUE))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 21301

count(filter(df_school, FALSE))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 0
count(subset(df_school, FALSE))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 0

11 / 59

Subset function, examples

Count all CA public high schools that are at least 50% Latinx and received at least 1
visit from UC Berkeley (var= visits_by_110635)
#filter()
count(filter(df_school, school_type == "public", pct_hispanic >= 50,

state_code == "CA", visits_by_110635 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 100

#subset()
count(subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA" & visits_by_110635 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 100

12 / 59

Subset function, examples

subset() can also use %in% operator, which is more efficient version of OR
operator |

▶ Count number of schools from MA, ME, or VT that received at least one visit
from University of Alabama (var= visits_by_100751)

#filter()
count(filter(df_school, state_code %in% c("MA","ME","VT"),

visits_by_100751 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 108

#subset()
count(subset(df_school, state_code %in% c("MA","ME","VT")

& visits_by_100751 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 108

13 / 59

Subset function, examples

Use the select argument within subset() to keep selected variables

▶ syntax: select = c(var_name1,var_name2,...,var_name_n)

Subset all CA public high schools that are at least 50% Latinx AND only keep
variables name and address
subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA", select = c(name, address))
#> # A tibble: 713 x 2
#> name address
#> <chr> <chr>
#> 1 Tustin High 1171 El Camino Real
#> 2 Bell Gardens High 6119 Agra St.
#> 3 Santa Ana High 520 W. Walnut
#> 4 Warren High 8141 De Palma St.
#> 5 Hollywood Senior High 1521 N. Highland Ave.
#> 6 Venice Senior High 13000 Venice Blvd.
#> 7 Sequoia High 1201 Brewster Ave.
#> 8 Santa Barbara Senior High 700 E. Anapamu St.
#> 9 Santa Paula High 404 N. Sixth St.
#> 10 Azusa High 240 N. Cerritos Ave.
#> # ... with 703 more rows

14 / 59

Subset function, examples

Combine subset() with assignment (<-) to create a new data frame
Create a new date frame of all CA public high schools that are at least 50% Latinx
AND only keep variables name and address
df_school_v2 <- subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA", select = c(name, address))

head(df_school_v2, n=5)
#> # A tibble: 5 x 2
#> name address
#> <chr> <chr>
#> 1 Tustin High 1171 El Camino Real
#> 2 Bell Gardens High 6119 Agra St.
#> 3 Santa Ana High 520 W. Walnut
#> 4 Warren High 8141 De Palma St.
#> 5 Hollywood Senior High 1521 N. Highland Ave.

nrow(df_school_v2)
#> [1] 713

15 / 59

Student Exercises

Compare tidyverse to subset() from base R in extracting columns (variables),
observations:

1. Use both base R and tidyverse to create a new dataframe by extracting the
columns instnm , event_date , event_type from df_event. And show what
columns (variables) are in the newly created dataframe.

2. Use both base R and tidyverse to create a new dataframe from df_school that
includes out-of-state public high schools with 50%+ Latinx student enrollment
that received at least one visit by the University of California Berkeley (var=
visits_by_110635). And count the number of observations.

3. Use both base R and tidyverse to count the number of public schools from CA,
FL or MA that received one or two visits from UC Berkeley from df_school.

4. Use base R to subset all public out-of-state high schools visited by University of
California Berkeley that enroll at least 50% Black students, and only keep
variables “state_code”, “name” and “zip_code” .

16 / 59

Solution to Student Exercises
Solution to 1
base R using subset() function
df_event_br <- subset(df_event, select=c(instnm, event_date, event_type))
names(df_event_br)
#> [1] "instnm" "event_date" "event_type"

tidyverse using select() function
df_event_tv <- select(df_event, instnm, event_date, event_type)
names(df_event_tv)
#> [1] "instnm" "event_date" "event_type"

Solution to 2
base R using subset() function
df_school_br <- subset(df_school, state_code != "CA" & school_type == "public"

& pct_hispanic >= 50 & visits_by_110635 >=1)
nrow(df_school_br)
#> [1] 10

tidyverse using filter() function
df_school_tv <- filter(df_school, state_code != "CA" & school_type == "public"

& pct_hispanic >= 50 & visits_by_110635 >=1)
nrow(df_school_tv)
#> [1] 10

17 / 59

Solution to Student Exercises

Solution to 3
base R using subset() function
count(subset(df_school, state_code %in% c("CA", "FL", "MA")

& school_type == "public" & visits_by_110635 %in% c(1,2)))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 246

tidyverse using filter() function
count(filter(df_school, state_code %in% c("CA", "FL", "MA")

& school_type == "public" & visits_by_110635 %in% c(1,2)))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 246

18 / 59

Solution to Student Exercises

Solution to 4
base R using subset() function
subset(df_school, school_type == "public" & state_code != "CA"

& visits_by_100751 >= 1 & pct_hispanic >= 50,
select = c(state_code, name, zip_code))

#> # A tibble: 73 x 3
#> state_code name zip_code
#> <chr> <chr> <chr>
#> 1 AZ Agua Fria High School 85323
#> 2 AZ Desert Edge High School 85338
#> 3 AZ Tempe High School 85281
#> 4 AZ Westview High School 85353
#> 5 AZ Apollo High School 85302
#> 6 AZ South Mountain High School 85040
#> 7 AZ Tolleson Union High School 85353
#> 8 CO THORNTON HIGH SCHOOL 80229
#> 9 CO MARTIN LUTHER KING JR. EARLY COLLEGE 80249
#> 10 CO BATTLE MOUNTAIN HIGH SCHOOL 81620
#> # ... with 63 more rows

19 / 59

Subsetting using subsetting operators

20 / 59

Subsetting to Extract Elements

“Subsetting” refers to isolating particular elements of an object

Subsetting operators can be used to select/exclude elements (e.g., variables,
observations)

▶ there are three subsetting operators: [] , $, [[]]
▶ these operators function differently based on vector types (e.g, atomic vectors,

lists, data frames)

21 / 59

Wichham refers to number of “dimensions” in R objects
An atomic vector is a 1-dimensional object that contains n elements
x <- c(1.1, 2.2, 3.3, 4.4, 5.5)
str(x)
#> num [1:5] 1.1 2.2 3.3 4.4 5.5

Lists are multi-dimensional objects
▶ Contains n elements; each element may contain a 1-dimensional atomic vector or

a multi-dimensional list. Below list contains 3 dimensions
list <- list(c(1,2), list("apple", "orange"))
str(list)
#> List of 2
#> $: num [1:2] 1 2
#> $:List of 2
#> ..$: chr "apple"
#> ..$: chr "orange"

Data frames are 2-dimensional lists
▶ each element is a variable (dimension=columns)
▶ within each variable, each element is an observation (dimension=rows)

ncol(df_school)
#> [1] 26
nrow(df_school)
#> [1] 21301

22 / 59

Subset atomic vectors using []

23 / 59

Subsetting elements of atomic vectors

“Subsetting” a vector refers to isolating particular elements of a vector
▶ I sometimes refer to this as “accessing elements of a vector”
▶ subsestting elements of a vector is similar to “filtering” rows of a data-frame
▶ [] is the subsetting function for vectors

Six ways to subset an atomic vector using []

1. Using positive integers to return elements at specified positions
2. Using negative integers to exclude elements at specified positions
3. Using logicals to return elements where corresponding logical is TRUE
4. Empty [] returns original vector (useful for dataframes)
5. Zero vector [0], useful for testing data
6. If vector is “named,” use character vectors to return elements with matching

names

24 / 59

1. Using positive integers to return elements at specified positions (subset
atomic vectors using [])

Create atomic vector x
(x <- c(1.1, 2.2, 3.3, 4.4, 5.5))
#> [1] 1.1 2.2 3.3 4.4 5.5
str(x)
#> num [1:5] 1.1 2.2 3.3 4.4 5.5

[] is the subsetting function for vectors

▶ contents inside [] can refer to element number (also called “position”).
▶ e.g., [3] refers to contents of 3rd element (or position 3)

x[5] #return 5th element
#> [1] 5.5

x[c(3, 1)] #return 3rd and 1st element
#> [1] 3.3 1.1

x[c(4,4,4)] #return 4th element, 4th element, and 4th element
#> [1] 4.4 4.4 4.4

#Return 3rd through 5th element
str(x)
#> num [1:5] 1.1 2.2 3.3 4.4 5.5
x[3:5]
#> [1] 3.3 4.4 5.5

25 / 59

2. Using negative integers to exclude elements at specified positions (subset
atomic vectors using [])

Before excluding elements based on position, investigate object
x
#> [1] 1.1 2.2 3.3 4.4 5.5

length(x)
#> [1] 5
str(x)
#> num [1:5] 1.1 2.2 3.3 4.4 5.5

Use negative integers to exclude elements based on element position
x[-1] # exclude 1st element
#> [1] 2.2 3.3 4.4 5.5

x[c(3,1)] # 3rd and 1st element
#> [1] 3.3 1.1
x[-c(3,1)] # exclude 3rd and 1st element
#> [1] 2.2 4.4 5.5

26 / 59

3. Using logicals to return elements where corresponding logical is TRUE
(subset atomic vectors using [])

x
#> [1] 1.1 2.2 3.3 4.4 5.5

When using x[y] to subset x , good practice to have length(x)==length(y)

length(x) # length of vector x
#> [1] 5
length(c(TRUE,FALSE,TRUE,FALSE,TRUE)) # length of y
#> [1] 5
length(x) == length(c(TRUE,FALSE,TRUE,FALSE,TRUE)) # condition true
#> [1] TRUE
x[c(TRUE,TRUE,FALSE,FALSE,TRUE)]
#> [1] 1.1 2.2 5.5

Recycling rules:
▶ in x[y] , if x is different length than y , R “recycles” length of shorter to

match length of longer
length(c(TRUE,FALSE))
#> [1] 2
x
#> [1] 1.1 2.2 3.3 4.4 5.5
x[c(TRUE,FALSE)]
#> [1] 1.1 3.3 5.5

27 / 59

3. Using logicals to return elements where corresponding logical is TRUE
(subset atomic vectors using [])

x
#> [1] 1.1 2.2 3.3 4.4 5.5

Note that a missing value (NA) in the index always yields a missing value in the
output
x[c(TRUE, FALSE, NA, TRUE, NA)]
#> [1] 1.1 NA 4.4 NA

Return all elements of object x where element is greater than 3
x
#> [1] 1.1 2.2 3.3 4.4 5.5
x[x>3]
#> [1] 3.3 4.4 5.5

28 / 59

4. Empty [] returns original vector (subset atomic vectors using [])

x
#> [1] 1.1 2.2 3.3 4.4 5.5

x[]
#> [1] 1.1 2.2 3.3 4.4 5.5

This is useful for sub-setting data frames, as we will show below

29 / 59

5. Zero vector [0] (subset atomic vectors using [])

Zero vector, x[0]

▶ R interprets this as returning element 0
x[0]
#> numeric(0)

Wickham states:
▶ “This is not something you usually do on purpose, but it can be helpful for

generating test data.”

30 / 59

6. If vector is named, character vectors to return elements with matching
names (subset atomic vectors using [])

Create vector y that has values of vector x but each element is named
x
#> [1] 1.1 2.2 3.3 4.4 5.5

(y <- c(a=1.1, b=2.2, c=3.3, d=4.4, e=5.5))
#> a b c d e
#> 1.1 2.2 3.3 4.4 5.5

Return elements of vector based on name of element
▶ enclose element names in single '' or double "" quotes

#show element named "a"
y["a"]
#> a
#> 1.1

#show elements "a", "b", and "d"
y[c("a", "b", "d")]
#> a b d
#> 1.1 2.2 4.4

31 / 59

Subsetting lists/data frames using []

32 / 59

Subsetting lists using []
Using [] operator to subset lists works the same as subsetting atomic vector

▶ Using [] with a list always returns a list
list_a <- list(list(1,2),3,"apple")
str(list_a)
#> List of 3
#> $:List of 2
#> ..$: num 1
#> ..$: num 2
#> $: num 3
#> $: chr "apple"

#create new list that consists of elements 3 and 1 of list_a
list_b <- list_a[c(3, 1)]
str(list_b)
#> List of 2
#> $: chr "apple"
#> $:List of 2
#> ..$: num 1
#> ..$: num 2

#show elements 3 and 1 of object list_a
#str(list_a[c(3, 1)])

33 / 59

Subsetting data frames using []

Recall that a data frame is just a particular kind of list
▶ each element = a column = a variable

Using [] with a list always returns a list

▶ Using [] with a data frame always returns a data frame

Two ways to use [] to extract elements of a data frame

1. use “single index” df_name[<columns>] to extract columns (variables) based on
element position number (i.e., column number)

2. use “double index” df_name[<rows>, <columns>] to extact particular rows and
columns of a data frame

34 / 59

Subsetting data frames using [] to extract columns (variables) based on
element position

Use “single index” df_name[<columns>] to extract columns (variables) based on
element number (i.e., column number)

Examples [output omitted]
names(df_event)

#extract elements 1 through 4 (elements=columns=variables)
df_event[1:4]
df_event[c(1,2,3,4)]

str(df_event[1:4])
#extract columns 13 and 7
df_event[c(13,7)]

35 / 59

Subsetting Data Frames to extract columns (variables) and rows
(observations) based on positionality

use “double index” syntax df_name[<rows>, <columns>] to extact particular rows
and columns of a data frame

▶ often combined with sequences (e.g., 1:10)
#Return rows 1-3 and columns 1-4
df_event[1:3, 1:4]
#> # A tibble: 3 x 4
#> instnm univ_id instst pid
#> <chr> <int> <chr> <int>
#> 1 UM Amherst 166629 MA 57570
#> 2 UM Amherst 166629 MA 56984
#> 3 UM Amherst 166629 MA 57105

#Return rows 50-52 and columns 10 and 20
df_event[50:52, c(10,20)]
#> # A tibble: 3 x 2
#> event_state pct_tworaces_zip
#> <chr> <dbl>
#> 1 MA 1.98
#> 2 MA 1.98
#> 3 MA 1.98

36 / 59

Subsetting Data Frames to extract columns (variables) and rows
(observations) based on positionality

use “double index” syntax df_name[<rows>, <columns>] to extact particular rows
and columns of a data frame

recall that empty [] returns original object (output omitted)
#return original data frame
df_event[]

#return specific rows and all columns (variables)
df_event[1:5,]

#return all rows and specific columns (variables)
df_event[, c(1,2,3)]

37 / 59

Use [] to extract data frame columns based on variable names

Selecting columns from a data frame by subsetting with [] and list of element
names (i.e., variable names) enclose in quotes

“single index” approach extracts specific variables, all rows (output omittted)
df_event[c("instnm", "univ_id", "event_state")]
select(df_event,instnm,univ_id,event_state) # same same

“Double index” approach extracts specific variables and specific rows
▶ syntax df_name[<rows>, <columns>]

df_event[1:5, c("instnm", "event_state", "event_type")]
#> # A tibble: 5 x 3
#> instnm event_state event_type
#> <chr> <chr> <chr>
#> 1 UM Amherst MA public hs
#> 2 UM Amherst MA public hs
#> 3 UM Amherst MA public hs
#> 4 UM Amherst MA public hs
#> 5 Stony Brook MA public hs

38 / 59

Student exercises

Use subsetting operators from base R in extracting columns (variables), observations:
1. Use both “single index” and “double index” in subsetting to create a new

dataframe by extracting the columns instnm , event_date , event_type from
df_event. And show what columns (variables) are in the newly created dataframe.

2. Use subsetting to return rows 1-5 of columns state_code , name , address
from df_school.

39 / 59

Solution to Student Exercises

Solution to 1
base R using subsetting operators
single index
df_event_br <- df_event[c("instnm", "event_date", "event_type")]
#double index
df_event_br <- df_event[, c("instnm", "event_date", "event_type")]
names(df_event_br)
#> [1] "instnm" "event_date" "event_type"

Solution to 2
base R using subsetting operators
df_school[1:5, c("state_code", "name", "address")]
#> # A tibble: 5 x 3
#> state_code name address
#> <chr> <chr> <chr>
#> 1 AK Bethel Regional High School 1006 Ron Edwards Memorial Dr
#> 2 AK Ayagina'ar Elitnaurvik 106 Village Road
#> 3 AK Kwigillingok School 108 Village Road
#> 4 AK Nelson Island Area School 118 Village Road
#> 5 AK Alakanuk School 9 School Road

40 / 59

Subsetting lists/data frames using [[]] and $

41 / 59

Subset single element from object using [[]] operator
So far we have used [] to excract elements from an object

▶ Applying [] to an atomic vector returns an atomic vector with specific elements
you requested

▶ Applying [] to a list returns a shorter list that contains the specific elements
you requested

[[]] also extract elements from an object

▶ Applying [[]] gives same result as [] ; that is, an atomic vector with element
you request

(x <- c(1.1, 2.2, 3.3, 4.4, 5.5))
#> [1] 1.1 2.2 3.3 4.4 5.5
str(x[3])
#> num 3.3
str(x[[3]])
#> num 3.3

▶ Applying [[]] to list gives the “contents” of the list, rather than list itself
list_a <- list(1:3, "a", 4:6)
str(list_a)
#> List of 3
#> $: int [1:3] 1 2 3
#> $: chr "a"
#> $: int [1:3] 4 5 6
str(list_a[1])
#> List of 1
#> $: int [1:3] 1 2 3
str(list_a[[1]])
#> int [1:3] 1 2 3

42 / 59

Subset single element from object using [[]] operator
Wickham “Advanced R” chapter 4.3 [LINK HERE] uses “Train Metaphor” to
differentiate list vs. contents of list
The list is the entire train. Create a list with three elements (three “carriages”)
list_a <- list(1:3, "a", 4:6)
str(list_a)
#> List of 3
#> $: int [1:3] 1 2 3
#> $: chr "a"
#> $: int [1:3] 4 5 6

When extracting element(s) of a list you have two options:

1. Extracting elements using [] always returns a smaller list (smaller train)
str(list_a[1]) # returns a list
#> List of 1
#> $: int [1:3] 1 2 3

2. Extracting element using [[]] returns contents of particular carriage
▶ I say applying [[]] to a list or data frame returns a simpler object that moves up one

level of hierarchy
str(list_a[[1]]) # returns an atomic vector
#> int [1:3] 1 2 3

43 / 59

https://adv-r.hadley.nz/subsetting.html#subset-single

Subset single element from object using [[]] operator

In contrast to [] , we use [[]] to extract individual elements rather than multiple
elements

▶ we could write x[4] or x[4:6]
▶ we could write x[[4]] but not x[[4:6]]

44 / 59

Subset single element from object using [[]] operator
Just like [] can use [[]] to return contents of named elements, specified using
quotes

▶ syntax: obj_name[["element_name"]]

list_b <- list(var1=1:3, var2="a", var3=4:6)
str(list_b)
#> List of 3
#> $ var1: int [1:3] 1 2 3
#> $ var2: chr "a"
#> $ var3: int [1:3] 4 5 6

str(list_b["var1"])
#> List of 1
#> $ var1: int [1:3] 1 2 3

str(list_b[["var1"]])
#> int [1:3] 1 2 3

Works the same with data frames
str(df_event["zip"])
#> Classes 'tbl_df', 'tbl' and 'data.frame': 18680 obs. of 1 variable:
#> $ zip: chr "01002" "01007" "01020" "01020" ...

str(df_event[["zip"]])
#> chr [1:18680] "01002" "01007" "01020" "01020" "01027" "01027" "01027" ...

45 / 59

Subset lists/data frames using $

obj_name$element_name shorthand operator for obj_name[["element_name"]]

str(list_b)
#> List of 3
#> $ var1: int [1:3] 1 2 3
#> $ var2: chr "a"
#> $ var3: int [1:3] 4 5 6

list_b[["var1"]]
#> [1] 1 2 3
list_b$var1
#> [1] 1 2 3

str(list_b[["var1"]])
#> int [1:3] 1 2 3
str(list_b$var1)
#> int [1:3] 1 2 3

df_name$var_name : easiest way in base R to refer to variable in a data frame
str(df_event[["zip"]])
#> chr [1:18680] "01002" "01007" "01020" "01020" "01027" "01027" "01027" ...
str(df_event$zip)
#> chr [1:18680] "01002" "01007" "01020" "01020" "01027" "01027" "01027" ...

46 / 59

Subsetting data frames with [] combined with $

47 / 59

Subsetting Data Frames with [] combined with $

Combine [] with $ to subset data frame same as filter() or subset()

Syntax: df_name[df_name$var_name <condition>,]

▶ Note: Uses “double index” df_name[<rows>, <columns>] syntax
▶ Cannot use “single index” df_name[<columns>]

Examples (output omitted)
▶ All observations where the hich school received at least 1 visit from UC Berkeley

(var= visits_by_110635) and all columns
df_school[df_school$visits_by_110635 >= 1,]

▶ All obs where the high school received at least 1 visit from UC Berkeley and the
first three columns

df_school[df_school$visits_by_110635 == 1, 1:3]

▶ All obs where the high school received at least 1 visit from UC Berkeley and
variables “state_code” “school_type” “name”

df_school[df_school$visits_by_110635 == 1, c("state_code","school_type","name")]

48 / 59

Subsetting Data Frames with [] combined with $
Combine [] with $ to subset data frame same as filter() or subset()

▶ Syntax: df_name[df_name$var_name <condition>,]

▶ Can be combined with count() or nrow() to avoid printing many rows

Count obs where high schools received at least 1 visit by Bama (100751) and at least
one visit by Berkeley (110635)

▶ compare with filter() and subset() approaches
#[] combined with $ approach
count(df_school[df_school$visits_by_110635 >= 1

& df_school$visits_by_100751 >= 1,])
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 247

count(df_school[df_school[["visits_by_110635"]] >= 1
& df_school[["visits_by_100751"]] >= 1,])

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 247

df_school[]
#> # A tibble: 21,301 x 26
#> state_code school_type ncessch name address city zip_code pct_white
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 AK public 020000~ Beth~ 1006 R~ Beth~ 99559 11.8
#> 2 AK public 020000~ Ayag~ 106 Vi~ Kong~ 99559 0
#> 3 AK public 020000~ Kwig~ 108 Vi~ Kwig~ 99622 0
#> 4 AK public 020000~ Nels~ 118 Vi~ Toks~ 99637 0
#> 5 AK public 020000~ Alak~ 9 Scho~ Alak~ 99554 2.52
#> 6 AK public 020000~ Emmo~ Genera~ Emmo~ 99581 0
#> 7 AK public 020000~ Hoop~ Genera~ Hoop~ 99604 0
#> 8 AK public 020000~ Igna~ 100 Hi~ Moun~ 99632 0
#> 9 AK public 020000~ Pilo~ 5090 S~ Pilo~ 99650 0.559
#> 10 AK public 020000~ Kotl~ 20129 ~ Kotl~ 99620 0.538
#> # ... with 21,291 more rows, and 18 more variables: pct_black <dbl>,
#> # pct_hispanic <dbl>, pct_asian <dbl>, pct_amerindian <dbl>,
#> # pct_other <dbl>, num_fr_lunch <dbl>, total_students <dbl>,
#> # num_took_math <dbl>, num_prof_math <dbl>, num_took_rla <dbl>,
#> # num_prof_rla <dbl>, avgmedian_inc_2564 <dbl>, visits_by_110635 <int>,
#> # visits_by_126614 <int>, visits_by_100751 <int>, inst_110635 <chr>,
#> # inst_126614 <chr>, inst_100751 <chr>
#filter() approach
nrow(filter(df_school, visits_by_110635 >= 1, visits_by_100751 >= 1))
#> [1] 247

#subset() approach
nrow(subset(df_school, visits_by_110635 >= 1 & visits_by_100751 >= 1))
#> [1] 247

49 / 59

Subsetting Data Frames with [] and $, NA Observations

When sub-setting via [] combined with $, result will include:

▶ rows where condition is TRUE
▶ as well as rows with NA (missing) values for condition.

Task: How many events at public high schools with at least $50k median household
income

▶ extracting observations via [] combined with $
#num obs event_type=="public hs" and med_inc is missing
nrow(df_event[df_event$event_type == "public hs"

& is.na(df_event$med_inc)==1 ,])
#> [1] 75

#num obs event_type=="public hs" & med_inc is not NA & med_inc >= $50,000
nrow(df_event[df_event$event_type == "public hs"

& is.na(df_event$med_inc)==0 & df_event$med_inc>=50000 ,])
#> [1] 9941

#num obs event_type=="public hs" and med_inc >= $50,000
nrow(df_event[df_event$event_type == "public hs"

& df_event$med_inc>=50000 ,])
#> [1] 10016

50 / 59

Subsetting Data Frames with [] and $, NA Observations
subset using [] combined with $, result includes:

▶ rows where condition TRUE ; AND rows with NA for condition

Base R filter using subset() excludes rows with NA for condition
#num obs event_type=="public hs" and med_inc is missing
nrow(subset(df_event, event_type == "public hs" & is.na(med_inc)==1))
#> [1] 75
#num obs event_type=="public hs" & med_inc is not NA & med_inc >= $50,000
nrow(subset(df_event, event_type == "public hs" & is.na(med_inc)==0

& med_inc>=50000))
#> [1] 9941
#num obs event_type=="public hs" & med_inc >= $50,000
nrow(subset(df_event, event_type == "public hs"

& med_inc>=50000))
#> [1] 9941

Tidyverse filter() excludes rows with NA for condition.
#num obs event_type=="public hs" and med_inc is missing
nrow(filter(df_event, event_type == "public hs", is.na(med_inc)==1))
#> [1] 75
#num obs event_type=="public hs" & med_inc is not NA & med_inc >= $50,000
nrow(filter(df_event, event_type == "public hs", is.na(med_inc)==0, med_inc>=50000))
#> [1] 9941
#num obs event_type=="public hs" & med_inc >= $50,000
nrow(filter(df_event, event_type == "public hs", med_inc>=50000))
#> [1] 9941 51 / 59

Subsetting Data Frames with [] and $, NA Observations
To exclude rows where condition is NA if subset using [] combined w/ $

▶ use which() to ask only for values where condition evaluates to TRUE
▶ which() returns position numbers for elements where condition is TRUE

#?which
c(TRUE,FALSE,NA,TRUE)
#> [1] TRUE FALSE NA TRUE
str(c(TRUE,FALSE,NA,TRUE))
#> logi [1:4] TRUE FALSE NA TRUE
which(c(TRUE,FALSE,NA,TRUE))
#> [1] 1 4

Task: Count events at public HS with at least $50k median household income?
#Tidyverse, filter()
nrow(filter(df_event, event_type == "public hs" & med_inc>=50000))
#> [1] 9941

#Base R, `[]` combined with `$`; without which()
nrow(df_event[df_event$event_type == "public hs" & df_event$med_inc>=50000,])
#> [1] 10016

#Base R, `[]` combined with `$`; with which()
nrow(df_event[which(df_event$event_type == "public hs"

& df_event$med_inc>=50000),])
#> [1] 9941

52 / 59

Student Exercises

Subsetting Data Frames with (1) [] and $; (2) subset() and filter():
1. Show how many public high schools in California with at least 50% Latinx

(hispanic in data) student enrollment from df_school.
2. Show how many out-state events at public high schools with more than $30K

median from df_event (do not forget to exclude missing values).

53 / 59

Solution to Student Exercises

Solution to 1
base R using [] and $
df_school_br1<- df_school[df_school$school_type == "public"

& df_school$pct_hispanic >= 50
& df_school$state_code == "CA",]

nrow(df_school_br1)
#> [1] 713

base R using subset() function
df_school_br2 <- subset(df_school, school_type == "public"

& pct_hispanic >= 50
& state_code == "CA")

nrow(df_school_br2)
#> [1] 713

tidyverse using filter() function
df_school_tv <- df_school %>% filter(school_type == "public"

& pct_hispanic >= 50
& state_code == "CA")

nrow(df_school_tv)
#> [1] 713

54 / 59

Solution to Student Exercises
Solution to 2:
base R using [] and $ (NA included)
use is.na to exclude NA
nrow(df_event[df_event$event_type == "public hs" & df_event$event_inst =="Out-State"

& df_event$med_inc > 30000 & is.na(df_event$med_inc) ==0,])
#> [1] 7784

use which to exclude NA
nrow(df_event[which(df_event$event_type == "public hs" & df_event$event_inst =="Out-State"

& df_event$med_inc > 30000),])
#> [1] 7784

base R using subset() function (NA excluded)
nrow(subset(df_event, event_type == "public hs"

& event_inst =="Out-State"& df_event$med_inc > 30000))
#> [1] 7784

tidyverse using filter() function (NA excluded)
count(filter(df_event, event_type == "public hs"

& event_inst =="Out-State" & df_event$med_inc > 30000))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 7784

55 / 59

Sorting data

56 / 59

Base R sort() for vectors

sort() is a base R function that sorts vectors

Syntax: sort(x, decreasing=FALSE, ...)

▶ where x is object being sorted
▶ By default it sorts in ascending order (low to high)
▶ Need to set decreasing argument to TRUE to sort from high to low

#?sort()
x<- c(31, 5, 8, 2, 25)
sort(x)
#> [1] 2 5 8 25 31
sort(x, decreasing = TRUE)
#> [1] 31 25 8 5 2

57 / 59

Base R order() for dataframes

order() is a base R function that sorts vectors

▶ Syntax: order(..., na.last = TRUE, decreasing = FALSE)
▶ where ... are variable(s) to sort by
▶ By default it sorts in ascending order (low to high)
▶ Need to set decreasing argument to TRUE to sort from high to low

Descending argument only works when we want either one (and only) variable
descending or all variables descending (when sorting by multiple vars)

▶ use - when you want to indicate which variables are descending while using the
default ascending sorting

df_event[order(df_event$event_date),]
df_event[order(df_event$event_date, df_event$total_12),]

#sort descending via argument
df_event[order(df_event$event_date, decreasing = TRUE),]
df_event[order(df_event$event_date, df_event$total_12, decreasing = TRUE),]

#sorting by both ascending and descending variables
df_event[order(df_event$event_date, -df_event$total_12),]

58 / 59

Compare tidyverse to base r, sorting

-Create a new dataframe from df_events that sorts by ascending by event_date ,
ascending event_state , and descending pop_total .

tidyverse
df_event_tv <- arrange(df_event, event_date, event_state, desc(pop_total))

base R using order() function
df_event_br1 <- df_event[order(df_event$event_date, df_event$event_state,

-df_event$pop_total),]

59 / 59

	Introduction
	Subsetting using subset() function
	Subsetting using subsetting operators
	Subset atomic vectors using []
	Subsetting lists/data frames using []
	Subsetting lists/data frames using [[]] and $
	Subsetting data frames with [] combined with $

	Sorting data

