
Lecture 3: Investigating objects
Managing and Manipulating Data Using R

1 / 69

What we will do today

1. Missing values [finish-up]

2. Tidyverse vs. Base R

3. Investigating data patterns via Tidyverse
3.1 Select variables
3.2 Filter rows
3.3 Arrange rows

4. Investigating data patterns using Base R
4.1 Subsetting using subsetting operators
4.2 Subsetting using the subset function
4.3 Sorting data

5. Tidyverse vs base R examples [resource for you]

2 / 69

Libraries we will use today

“Load” the package we will use today (output omitted)
library(tidyverse)

If package not yet installed, then must install before you load. Install in “console”
rather than .Rmd file

▶ Generic syntax: install.packages("package_name")
▶ Install “tidyverse”: install.packages("tidyverse")

Note: when we load package, name of package is not in quotes; but when we install
package, name of package is in quotes:

▶ install.packages("tidyverse")
▶ library(tidyverse)

3 / 69

Load .Rdata data frames we will use today

Data on off-campus recruiting events by public universities
▶ Data frame object df_event

▶ One observation per university, recruiting event
▶ Data frame object df_school

▶ One observation per high school (visited and non-visited)
rm(list = ls()) # remove all objects in current environment

getwd()
#> [1] "/Users/karinasalazar/rclass/lectures/lecture3"
#load dataset with one obs per recruiting event
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_event_somevars.RData"))
#load("../../data/recruiting/recruit_event_somevars.Rdata")

#load dataset with one obs per high school
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_school_somevars.RData"))
#load("../../data/recruiting/recruit_school_somevars.Rdata")

4 / 69

Missing values [finish-up]

5 / 69

Missing values
Missing values have the value NA

▶ NA is a special keyword, not the same as the character string "NA"

use is.na() function to determine if a value is missing

▶ is.na() returns a logical vector
is.na(5)
#> [1] FALSE
is.na(NA)
#> [1] TRUE
is.na("NA")
#> [1] FALSE
typeof(is.na("NA")) # example of a logical vector
#> [1] "logical"

nvector <- c(10,5,NA)
is.na(nvector)
#> [1] FALSE FALSE TRUE
typeof(is.na(nvector)) # example of a logical vector
#> [1] "logical"

svector <- c("e","f",NA,"NA")
is.na(svector)
#> [1] FALSE FALSE TRUE FALSE

6 / 69

Missing values
Missing values have the value NA

▶ NA is a special keyword, not the same as the character string "NA"

use is.na() function to determine if a value is missing

▶ is.na() returns a logical vector
is.na(5)
#> [1] FALSE
is.na(NA)
#> [1] TRUE
is.na("NA")
#> [1] FALSE
typeof(is.na("NA")) # example of a logical vector
#> [1] "logical"

nvector <- c(10,5,NA)
is.na(nvector)
#> [1] FALSE FALSE TRUE
typeof(is.na(nvector)) # example of a logical vector
#> [1] "logical"

svector <- c("e","f",NA,"NA")
is.na(svector)
#> [1] FALSE FALSE TRUE FALSE

7 / 69

Missing values are “contagious”

What does “contagious” mean?
▶ operations involving a missing value will yield a missing value

7>5
#> [1] TRUE
7>NA
#> [1] NA
0==NA
#> [1] NA
2*c(0,1,2,NA)
#> [1] 0 2 4 NA
NA*c(0,1,2,NA)
#> [1] NA NA NA NA

8 / 69

Function and missing values, the table() function
table() function useful for investigating categorical variables
table(df_event$g12offered)
#>
#> 1
#> 11423

By default table() ignores NA values

▶ useNA argument determines whether to include NA values
▶ “allowed values correspond to never (”no“); only if count is positive (”ifany“); and even

for zero counts (”always“)”
nrow(df_event)
#> [1] 18680
table(df_event$g12offered, useNA="always")
#>
#> 1 <NA>
#> 11423 7257

Broader point:
▶ Most functions that create descriptive statistics have options about how to treat

missing values
▶ When investigating data, good practice to always show missing values

Tip:
▶ command str(df_event) shows which variables have missing values

9 / 69

Tidyverse vs. Base R

10 / 69

Why learn to “wrangle” data both via tidyverse and Base R?

▶ Base R: “core” R commands for cleaning and manipulating data that are not part
of any external package/library

▶ Tidyverse has become the leading way many people clean and manipulate data in
R

▶ These packages make data wrangling simpler than “core” base R commands (most
times)

▶ Tidyverse commands can be more more efficient (less lines of code, consolidate steps)

▶ But you will inevitably run into edge cases where tidyverse commands don’t work
the way you expect them to and you’ll need to use base R

▶ Ozan first learned R via tidyverse
▶ I first learned R via Base R

▶ It’s good to have a basic foundation on both approaches and then decide which
you prefer for most data tasks!

▶ this class will primarily use tidyverse approach
▶ future data science seminar will provide examples of edge cases where base R is

necessary

11 / 69

Tidyverse vs. base R functions

tidyverse base R operation

select() [] + c() OR subset() “extract” variables
filter() [] + $ OR subset() “extract” observations
arrange() order() sorting data

12 / 69

Investigating data patterns via Tidyverse

13 / 69

Introduction to the dplyr library

dplyr , a package within the tidyverse suite of packages, provide tools for
manipulating data frames

▶ Wickham describes functions within dplyr as a set of “verbs” that fall in the
broader categories of subsetting, sorting, and transforming

Today Upcoming weeks
Subsetting data Transforming data
- select() variables - mutate() creates new variables
- filter() observations - summarize() calculates across rows
Sorting data - group_by() to calculate across rows within groups
- arrange()

All dplyr verbs (i.e., functions) work as follows

1. first argument is a data frame
2. subsequent arguments describe what to do with variables and observations in data

frame
▶ refer to variable names without quotes

3. result of the function is a new data frame

14 / 69

Select variables

15 / 69

Select variables using select() function
Printing observations is key to investigating data, but datasets often have hundreds,
thousands of variables
select() function selects columns of data (i.e., variables) you specify
▶ first argument is the name of data frame object
▶ remaining arguments are variable names, which are separated by commas and

without quotes

Without assignment (<-), select() by itself simply prints selected vars
#?select
select(df_event,instnm,event_date,event_type,event_state,med_inc)
#> # A tibble: 18,680 x 5
#> instnm event_date event_type event_state med_inc
#> <chr> <date> <chr> <chr> <dbl>
#> 1 UM Amherst 2017-10-12 public hs MA 71714.
#> 2 UM Amherst 2017-10-04 public hs MA 89122.
#> 3 UM Amherst 2017-10-25 public hs MA 70136.
#> 4 UM Amherst 2017-10-26 public hs MA 70136.
#> 5 Stony Brook 2017-10-02 public hs MA 71024.
#> 6 USCC 2017-09-18 private hs MA 71024.
#> 7 UM Amherst 2017-09-18 private hs MA 71024.
#> 8 UM Amherst 2017-09-26 public hs MA 97225
#> 9 UM Amherst 2017-09-26 private hs MA 97225
#> 10 UM Amherst 2017-10-12 public hs MA 77800.
#> # ... with 18,670 more rows

16 / 69

Select variables using select() function
Recall that all dplyr functions (e.g., select()) return a new data frame object

▶ type equals “list”
▶ length equals number of vars you select

typeof(select(df_event,instnm,event_date,event_type,event_state,med_inc))
#> [1] "list"
length(select(df_event,instnm,event_date,event_type,event_state,med_inc))
#> [1] 5

glimpse() : tidyverse function for viewing data frames

▶ a cross between str() and simply printing data
?glimpse
glimpse(df_event)

glimpse() a select() set of variables
glimpse(select(df_event,instnm,event_date,event_type,event_state,med_inc))
#> Rows: 18,680
#> Columns: 5
#> $ instnm <chr> "UM Amherst", "UM Amherst", "UM Amherst", "UM Amherst",...
#> $ event_date <date> 2017-10-12, 2017-10-04, 2017-10-25, 2017-10-26, 2017-1...
#> $ event_type <chr> "public hs", "public hs", "public hs", "public hs", "pu...
#> $ event_state <chr> "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "...
#> $ med_inc <dbl> 71713.5, 89121.5, 70136.5, 70136.5, 71023.5, 71023.5, 7...

17 / 69

Select variables using select() function

With assignment (<-), select() creates a new object containing only the variables
you specify
event_small <- select(df_event,instnm,event_date,event_type,event_state,med_inc)

glimpse(event_small)
#> Rows: 18,680
#> Columns: 5
#> $ instnm <chr> "UM Amherst", "UM Amherst", "UM Amherst", "UM Amherst",...
#> $ event_date <date> 2017-10-12, 2017-10-04, 2017-10-25, 2017-10-26, 2017-1...
#> $ event_type <chr> "public hs", "public hs", "public hs", "public hs", "pu...
#> $ event_state <chr> "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "...
#> $ med_inc <dbl> 71713.5, 89121.5, 70136.5, 70136.5, 71023.5, 71023.5, 7...

18 / 69

Select
select() can use “helper functions” starts_with() , contains() , and
ends_with() to choose columns

?select

Example:
#names(df_event)

select(df_event,instnm,starts_with("event"))
#> # A tibble: 18,680 x 8
#> instnm event_date event_type event_state event_inst event_name
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 UM Am~ 2017-10-12 public hs MA In-State Amherst-P~
#> 2 UM Am~ 2017-10-04 public hs MA In-State Hampshire~
#> 3 UM Am~ 2017-10-25 public hs MA In-State Chicopee ~
#> 4 UM Am~ 2017-10-26 public hs MA In-State Chicopee ~
#> 5 Stony~ 2017-10-02 public hs MA Out-State Easthampt~
#> 6 USCC 2017-09-18 private hs MA Out-State Williston~
#> 7 UM Am~ 2017-09-18 private hs MA In-State Williston~
#> 8 UM Am~ 2017-09-26 public hs MA In-State Granby Jr~
#> 9 UM Am~ 2017-09-26 private hs MA In-State MacDuffie~
#> 10 UM Am~ 2017-10-12 public hs MA In-State Smith Aca~
#> # ... with 18,670 more rows, and 2 more variables: event_location_name <chr>,
#> # event_datetime_start <dttm>

19 / 69

Rename variables

rename() function renames variables within a data frame object

Syntax:
▶ rename(obj_name, new_name = old_name,...)

rename(df_event, g12_offered = g12offered,
titlei = titlei_status_pub)

names(df_event)

Variable names do not change permanently unless we combine rename with
assignment

rename_event <- rename(df_event, g12_offered = g12offered, titlei = titlei_status_pub)
names(rename_event)
rm(rename_event)

20 / 69

Filter rows

21 / 69

The filter() function

filter() allows you to select observations based on values of variables
▶ Arguments

▶ first argument is name of data frame
▶ subsequent arguments are logical expressions to filter the data frame
▶ Multiple expressions separated by commas work as AND operators (e.g., condtion 1

TRUE AND condition 2 TRUE)
▶ What is the result of a filter() command?

▶ filter() returns a data frame consisting of rows where the condition is TRUE
?filter

Example from data frame object df_school , each obs is a high school

▶ Show all obs where the high school received 1 visit from UC Berkeley (110635)
[output omitted]

filter(df_school,visits_by_110635 == 1)

Note that resulting object is list, consisting of obs where condition TRUE
nrow(df_school)
#> [1] 21301
nrow(filter(df_school,visits_by_110635 == 1))
#> [1] 528

22 / 69

Filter, character variables

Use single quotes '' or double quotes "" to refer to values of character variables
glimpse(select(df_school, school_type,state_code))
#> Rows: 21,301
#> Columns: 2
#> $ school_type <chr> "public", "public", "public", "public", "public", "publ...
#> $ state_code <chr> "AK", "AK", "AK", "AK", "AK", "AK", "AK", "AK", "AK", "...

Identify all private high schools in CA that got 1 visit by particular universities
▶ UC-Berkeley (ID=110635)

filter(df_school,visits_by_110635 == 1, school_type == "private",
state_code == "CA")

▶ University of Alabama (ID=100751)
filter(df_school,visits_by_100751 == 1, school_type == "private",

state_code == "CA")

▶ Visited once by Berkeley and University of Alabama
filter(df_school,visits_by_100751 == 1, visits_by_110635 == 1,

school_type == "private", state_code == "CA")

23 / 69

Logical operators for comparisons

Symbol Meaning
== Equal to
!= Not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
& AND
| OR
%in includes

Figure 1: “Boolean” operations, x=left circle, y=right circle, from Wichkam (2018)

24 / 69

Filters and comparisons, Demonstration
Schools visited by Bama (100751) and/or Berkeley (110635)
#berkeley and bama
filter(df_school,visits_by_100751 >= 1, visits_by_110635 >= 1)
filter(df_school,visits_by_100751 >= 1 & visits_by_110635 >= 1) # same same
#berkeley or bama
filter(df_school,visits_by_100751 >= 1 | visits_by_110635 >= 1)

Apply count() function on top of filter() function to count the number of
observations that satisfy criteria

▶ Avoids printing individual observations
#Number of schools that git visit by Berkeley AND Bama
count(filter(df_school,visits_by_100751 >= 1 & visits_by_110635 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 247
#Number of schools that git visit by Berkeley OR Bama
count(filter(df_school,visits_by_100751 >= 1 | visits_by_110635 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 2763

25 / 69

Filters and comparisons, >=
Number of public high schools that are at least 50% Black in Alabama compared to
number of schools that received visit by Bama
#at least 50% black
count(filter(df_school, school_type == "public", pct_black >= 50,

state_code == "AL"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 86
count(filter(df_school, school_type == "public", pct_black >= 50,

state_code == "AL", visits_by_100751 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 21
#at least 50% white
count(filter(df_school, school_type == "public", pct_white >= 50,

state_code == "AL"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 238
count(filter(df_school, school_type == "public", pct_white >= 50,

state_code == "AL", visits_by_100751 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 82

26 / 69

Filters and comparisons, not equals (!=)

Count the number of high schools visited by University of Colorado (126614) that are
not located in CO

#number of high schools visited by U Colorado
count(filter(df_school, visits_by_126614 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1056

#number of high schools visited by U Colorado not located in CO
count(filter(df_school, visits_by_126614 >= 1, state_code != "CO"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 873
#number of high schools visited by U Colorado located in CO
#count(filter(df_school, visits_by_126614 >= 1, state_code == "CO"))

27 / 69

Filters and comparisons, %in% operator

What if you wanted to count the number of schools visited by Bama (100751) in a
group of states?
count(filter(df_school,visits_by_100751 >= 1, state_code == "MA" |

state_code == "VT" | state_code == "ME"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 108

Easier way to do this is with %in% operator
count(filter(df_school,visits_by_100751 >= 1, state_code %in% c("MA","ME","VT")))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 108

Select the private high schools that got either 2 or 3 visits from Bama
count(filter(df_school, visits_by_100751 %in% 2:3, school_type == "private"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 183

28 / 69

Identifying data type and possible values helpful for filtering
▶ class() and str() shows data type of a variable
▶ table() to show potential values of categorical variables

class(df_event$event_type)
#> [1] "character"
str(df_event$event_type)
#> chr [1:18680] "public hs" "public hs" "public hs" "public hs" "public hs" ...
table(df_event$event_type, useNA="always")
#>
#> 2yr college 4yr college other private hs public hs <NA>
#> 951 531 2001 3774 11423 0
class(df_event$event_state)
#> [1] "character"
str(df_event$event_state) # double quotes indicate character
#> chr [1:18680] "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" ...
class(df_event$med_inc)
#> [1] "numeric"
str(df_event$med_inc)
#> num [1:18680] 71714 89122 70136 70136 71024 ...

Now that we know event_type is a character, we can filter values
count(filter(df_event, event_type == "public hs", event_state =="CA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1100
#below code would return an error because variables are character
#count(filter(df_event, event_type == public hs, event_state ==CA))

29 / 69

Filtering and missing values
Wickham (2018) states:

▶ “ filter() only includes rows where condition is TRUE; it excludes both
FALSE and NA values. To preserve missing values, ask for them explicitly:”

Investigate var df_event$fr_lunch , number of free/reduced lunch students

▶ only available for visits to public high schools
#visits to public HS with less than 50 students on free/reduced lunch
count(filter(df_event,event_type == "public hs", fr_lunch<50))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 910
#visits to public HS, where free/reduced lunch missing
count(filter(df_event,event_type == "public hs", is.na(fr_lunch)))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 26
#visits to public HS, where free/reduced is less than 50 OR is missing
count(filter(df_event,event_type == "public hs", fr_lunch<50 | is.na(fr_lunch)))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 936

30 / 69

Exercise

Task
▶ Create a filter to identify all the high schools that recieved 1 visit from UC

Berkeley (110635) AND 1 visit from CU Boulder (126614)[output omitted]

31 / 69

Solution

filter(df_school,visits_by_110635 == 1, visits_by_126614==1)

nrow(filter(df_school,visits_by_110635 == 1, visits_by_126614==1))
count(filter(df_school,visits_by_110635 == 1, visits_by_126614==1))

▶ Must assign to create new object based on filter
berk_boulder <- filter(df_school,visits_by_110635 == 1, visits_by_126614==1)
count(berk_boulder)

32 / 69

Exercises

Use the data from df_event, which has one observation for each off-campus recruiting
event a university attends

1. Count the number of events attended by the University of Pittsburgh (Pitt)
univ_id == 215293

2. Count the number of recruiting events by Pitt at public or private high schools
3. Count the number of recruiting events by Pitt at public or private high schools

located in the state of PA
4. Count the number of recruiting events by Pitt at public high schools not located

in PA where median income is less than 100,000
5. Count the number of recruiting events by Pitt at public high schools not located

in PA where median income is greater than or equal to 100,000
6. Count the number of out-of-state recruiting events by Pitt at private high schools

or public high schools with median income of at least 100,000

33 / 69

Solution

1. Count the number of events attended by the University of Pittsburgh (Pitt)
univ_id == 215293

count(filter(df_event, univ_id == 215293))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1225

2. Count the number of recruiting events by Pitt at public or private high schools
str(df_event$event_type)
#> chr [1:18680] "public hs" "public hs" "public hs" "public hs" "public hs" ...
table(df_event$event_type, useNA = "always")
#>
#> 2yr college 4yr college other private hs public hs <NA>
#> 951 531 2001 3774 11423 0
count(filter(df_event, univ_id == 215293, event_type == "private hs" |

event_type == "public hs"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1030

34 / 69

Solution

3. Count the number of recruiting events by Pitt at public or private high schools
located in the state of PA

count(filter(df_event, univ_id == 215293, event_type == "private hs" |
event_type == "public hs", event_state == "PA"))

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 262

4. Count the number of recruiting events by Pitt at public high schools not located
in PA where median income is less than 100,000

count(filter(df_event, univ_id == 215293, event_type == "public hs",
event_state != "PA", med_inc < 100000))

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 213

35 / 69

Solution

5. Count the number of recruiting events by Pitt at public high schools not located
in PA where median income is greater than or equal to 100,000

count(filter(df_event, univ_id == 215293, event_type == "public hs",
event_state != "PA", med_inc >= 100000))

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 344

6. Count the number of out-of-state recruiting events by Pitt at private high schools
or public high schools with median income of at least 100,000

count(filter(df_event, univ_id == 215293, event_state != "PA",
(event_type == "public hs" & med_inc >= 100000) |

event_type == "private hs"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 553

36 / 69

Arrange rows

37 / 69

arrange() function

arrange() function “arranges” rows in a data frame; said different, it sorts
observations

Syntax: arrange(x,...)

▶ First argument, x , is a data frame
▶ Subsequent arguments are a “comma separated list of unquoted variable names”

arrange(df_event, event_date)

Data frame goes back to previous order unless you assign the new order
df_event
df_event <- arrange(df_event, event_date)
df_event

38 / 69

arrange() function

Ascending and descending order
▶ arrange() sorts in ascending order by default
▶ use desc() to sort a column by descending order

arrange(df_event, desc(event_date))

Can sort by multiple variables
arrange(df_event, univ_id, desc(event_date), desc(med_inc))

#sort by university and descending by size of 12th grade class; combine with select
select(arrange(df_event, univ_id, desc(g12)),instnm,event_type,event_date,g12)

39 / 69

arrange() , missing values sorted at the end
Missing values automatically sorted at the end, regardless of whether you sort
ascending or descending
Below, we sort by university, then by date of event, then by ID of high school
#by university, date, ascending school id
select(arrange(df_event, univ_id, desc(event_date), school_id),

instnm,event_date,event_type,school_id)

#by university, date, descending school id
select(arrange(df_event, univ_id, desc(event_date), desc(school_id)),

instnm,event_date,event_type,school_id)

Can sort by is.na to put missing values first
select(arrange(df_event, univ_id, desc(event_date), desc(is.na(school_id))),

instnm,event_date,event_type,school_id)
#> # A tibble: 18,680 x 4
#> instnm event_date event_type school_id
#> <chr> <date> <chr> <chr>
#> 1 Bama 2017-12-18 other <NA>
#> 2 Bama 2017-12-18 private hs A9106483
#> 3 Bama 2017-12-15 other <NA>
#> 4 Bama 2017-12-15 public hs 484473005095
#> 5 Bama 2017-12-15 public hs 062927004516
#> 6 Bama 2017-12-14 other <NA>
#> 7 Bama 2017-12-13 other <NA>
#> 8 Bama 2017-12-13 public hs 130387001439
#> 9 Bama 2017-12-13 private hs 00071151
#> 10 Bama 2017-12-13 public hs 063386005296
#> # ... with 18,670 more rows

40 / 69

Exercise, arranging

Use the data from df_event, which has one observation for each off-campus recruiting
event a university attends

1. Sort ascending by “univ_id” and descending by “event_date”
2. Select four variables in total and sort ascending by “univ_id” and descending by

“event_date”
3. Now using the same variables from above, sort by is.na to put missing values in

“school_id” first

41 / 69

Solution
1. Sort ascending by “univ_id” and descending by “event_date”

arrange(df_event, univ_id, desc(event_date))
#> # A tibble: 18,680 x 33
#> instnm univ_id instst pid event_date event_type zip school_id ipeds_id
#> <chr> <int> <chr> <int> <date> <chr> <chr> <chr> <int>
#> 1 Bama 100751 AL 7115 2017-12-18 private hs 77089 A9106483 NA
#> 2 Bama 100751 AL 7121 2017-12-18 other <NA> <NA> NA
#> 3 Bama 100751 AL 7114 2017-12-15 public hs 75165 48447300~ NA
#> 4 Bama 100751 AL 7100 2017-12-15 public hs 93012 06292700~ NA
#> 5 Bama 100751 AL 7073 2017-12-15 other 98027 <NA> NA
#> 6 Bama 100751 AL 7072 2017-12-14 other 98007 <NA> NA
#> 7 Bama 100751 AL 7118 2017-12-13 public hs 31906 13038700~ NA
#> 8 Bama 100751 AL 7099 2017-12-13 private hs 90293 00071151 NA
#> 9 Bama 100751 AL 7109 2017-12-13 public hs 92630 06338600~ NA
#> 10 Bama 100751 AL 7071 2017-12-13 other 98032 <NA> NA
#> # ... with 18,670 more rows, and 24 more variables: event_state <chr>,
#> # event_inst <chr>, med_inc <dbl>, pop_total <dbl>, pct_white_zip <dbl>,
#> # pct_black_zip <dbl>, pct_asian_zip <dbl>, pct_hispanic_zip <dbl>,
#> # pct_amerindian_zip <dbl>, pct_nativehawaii_zip <dbl>,
#> # pct_tworaces_zip <dbl>, pct_otherrace_zip <dbl>, fr_lunch <dbl>,
#> # titlei_status_pub <fct>, total_12 <dbl>, school_type_pri <int>,
#> # school_type_pub <int>, g12offered <dbl>, g12 <dbl>,
#> # total_students_pub <dbl>, total_students_pri <dbl>, event_name <chr>,
#> # event_location_name <chr>, event_datetime_start <dttm>

42 / 69

Solution

2. Select four variables in total and sort ascending by “univ_id” and descending by
“event_date”

select(arrange(df_event, univ_id, desc(event_date)), univ_id, event_date,
instnm, event_type)

#> # A tibble: 18,680 x 4
#> univ_id event_date instnm event_type
#> <int> <date> <chr> <chr>
#> 1 100751 2017-12-18 Bama private hs
#> 2 100751 2017-12-18 Bama other
#> 3 100751 2017-12-15 Bama public hs
#> 4 100751 2017-12-15 Bama public hs
#> 5 100751 2017-12-15 Bama other
#> 6 100751 2017-12-14 Bama other
#> 7 100751 2017-12-13 Bama public hs
#> 8 100751 2017-12-13 Bama private hs
#> 9 100751 2017-12-13 Bama public hs
#> 10 100751 2017-12-13 Bama other
#> # ... with 18,670 more rows

43 / 69

Solution

3. Select the variables “univ_id”, “event_date”, and “school_id” and sort by
is.na to put missing values in “school_id” first.

select(arrange(df_event, univ_id, desc(event_date), desc(is.na(school_id))),
univ_id, event_date, school_id)

#> # A tibble: 18,680 x 3
#> univ_id event_date school_id
#> <int> <date> <chr>
#> 1 100751 2017-12-18 <NA>
#> 2 100751 2017-12-18 A9106483
#> 3 100751 2017-12-15 <NA>
#> 4 100751 2017-12-15 484473005095
#> 5 100751 2017-12-15 062927004516
#> 6 100751 2017-12-14 <NA>
#> 7 100751 2017-12-13 <NA>
#> 8 100751 2017-12-13 130387001439
#> 9 100751 2017-12-13 00071151
#> 10 100751 2017-12-13 063386005296
#> # ... with 18,670 more rows

44 / 69

Investigating data patterns using Base R

45 / 69

Tidyverse vs. base R functions

tidyverse base R operation

select() [] + c() OR subset() “extract” variables
filter() [] + $ OR subset() “extract” observations
arrange() order() sorting data

46 / 69

Subsetting using subsetting operators

47 / 69

Subsetting to Extract Elements

Subsetting is the R word for accessing object elements.

Subsetting features can be used to select/exclude elements (i.e., variables and
observations)

▶ there are three subsetting operators: [] , $, [[]]
▶ these operators function differently based on vector types (e.g, atomic vectors,

lists, data frames)

48 / 69

Subsetting Atomic Vectors via operators

Six ways to subset an atomic vector using []

1. Using positive integers to return elements at specified positions
x <- c(1.1, 2.2, 3.3, 4.4, 5.5)
x[c(3, 1)]
#> [1] 3.3 1.1

2. Using negative integers to exclude elements at specified positions
x[-c(3,1)]
#> [1] 2.2 4.4 5.5

3. Using logicals to return elements where corresponding logical is TRUE
x[x>3] #3
#> [1] 3.3 4.4 5.5

49 / 69

Subsetting Atomic Vectors via operators

Six ways to subset an atomic vector using [] continued…

4. Empty [] returns original vector (useful for dataframes)
x[] #4
#> [1] 1.1 2.2 3.3 4.4 5.5

5. Zero vector (useful for testing data)
x[0]
#> numeric(0)

6. Returning character elements with matching names
y<- setNames(x, letters[1:5]) #6
y[c("a", "b", "d")] #6
#> a b d
#> 1.1 2.2 4.4

50 / 69

Subsetting Lists and Matrices via operators

Subsetting lists (arrays and matrices too) via [] operator works the same as
subsetting an atomic vector

▶ [] simplifies output to the lowest possible dimensionality (i.e.,if you subset a
(2D) matrix it will return a 1D vector with however many elements you subset)

x <- list(1,2,"apple")
y <- x[c(3, 1)]
typeof(y)
#> [1] "list"

a <- matrix(1:9, nrow = 3)
a #this is a 3X3 matrix
#> [,1] [,2] [,3]
#> [1,] 1 4 7
#> [2,] 2 5 8
#> [3,] 3 6 9

b <- a[c(1,5)]
b #returns an integer vector with two elements
#> [1] 1 5

51 / 69

Subsetting Single Elements from Vectors, Lists, and Matrices via operators

Two other subsetting operators are used for extracting single elements, since
subsetting lists with [] returns a smaller list

▶ [[]] , $
▶ $ is shorthand operator equivalent to x[["y"]] and is used to access variables

in a dataframe (will show this in upcoming slides)

Example from Hadley: If x is a train carrying objects, then x[[5]] is the object in
car 5 and x[4:6] is a smaller train made up of cars 4, 5, & 6.
x <- list(1:3, "a", 4:6)

y <- x[1] #this returns a list
typeof(y)
#> [1] "list"

z <- x[[1]] #this is not a list
typeof(z)
#> [1] "integer"

52 / 69

Subsetting Data Frames to extract columns (variables) based on
positionality

Selecting columns from a data frame by subsetting with [] and a single index based
on column positionality
df_event[1:4]
#> # A tibble: 18,680 x 4
#> instnm univ_id instst pid
#> <chr> <int> <chr> <int>
#> 1 UNL 181464 NE 11052
#> 2 Rutgers 186380 NJ 64786
#> 3 Rutgers 186380 NJ 64727
#> 4 Stony Brook 196097 NY 16005
#> 5 Bama 100751 AL 2667
#> 6 UGA 139959 GA 21008
#> 7 Kansas 155317 KS 59772
#> 8 Bama 100751 AL 2674
#> 9 Bama 100751 AL 2675
#> 10 Kansas 155317 KS 59853
#> # ... with 18,670 more rows

53 / 69

Subsetting Data Frames to extract columns (variables) and rows
(observations) based on positionality

Selecting rows and columns from a data frame by subsetting with [] and a double
index based on row/column positionality
#this returns the first 5 rows and first 3 columns
df_event[1:5, 1:3]
#> # A tibble: 5 x 3
#> instnm univ_id instst
#> <chr> <int> <chr>
#> 1 UNL 181464 NE
#> 2 Rutgers 186380 NJ
#> 3 Rutgers 186380 NJ
#> 4 Stony Brook 196097 NY
#> 5 Bama 100751 AL

#this returns the first 5 rows and all columns [output omitted]
df_event[1:5,]

54 / 69

Subsetting Data Frames to extract columns (variables) based on names

Selecting columns from a data frame by subsetting with [] and list of column names
df_event[c("instnm", "univ_id", "event_state")]
#> # A tibble: 18,680 x 3
#> instnm univ_id event_state
#> <chr> <int> <chr>
#> 1 UNL 181464 TX
#> 2 Rutgers 186380 NJ
#> 3 Rutgers 186380 NJ
#> 4 Stony Brook 196097 NY
#> 5 Bama 100751 TX
#> 6 UGA 139959 CT
#> 7 Kansas 155317 KS
#> 8 Bama 100751 AL
#> 9 Bama 100751 AL
#> 10 Kansas 155317 TX
#> # ... with 18,670 more rows

55 / 69

Subsetting Data Frames with [] and $

▶ Show all obs where the high school received 1 visit from UC Berkeley (110635)
and all columns [output omitted]

x <- df_school[df_school$visits_by_110635 == 1,]

▶ Show all obs where the high school received 1 visit from UC Berkeley (110635)
and the first three columns [output omitted]

df_school[df_school$visits_by_110635 == 1, 1:3]

▶ Show all obs where high schools received 1 visit by Bama (100751) and Berkeley
(110635)

df_school[df_school$visits_by_110635 == 1 & df_school$visits_by_100751 == 1,]

56 / 69

Subsetting Data Frames with [] and $

▶ Show all public high schools with at least 50% Latinx (hispanic in data) student
enrollment

#public high schools with at least 50% Latinx student enrollment
df_CA<- df_school[df_school$school_type == "public"

& df_school$pct_hispanic >= 50
& df_school$state_code == "CA",]

head(df_CA, n=3)
#> # A tibble: 3 x 26
#> state_code school_type ncessch name address city zip_code pct_white
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 CA public 064015~ Tust~ 1171 E~ Tust~ 92780 13.3
#> 2 CA public 062547~ Bell~ 6119 A~ Bell~ 90201 0.402
#> 3 CA public 063531~ Sant~ 520 W.~ Sant~ 92701 0.547
#> # ... with 18 more variables: pct_black <dbl>, pct_hispanic <dbl>,
#> # pct_asian <dbl>, pct_amerindian <dbl>, pct_other <dbl>, num_fr_lunch <dbl>,
#> # total_students <dbl>, num_took_math <dbl>, num_prof_math <dbl>,
#> # num_took_rla <dbl>, num_prof_rla <dbl>, avgmedian_inc_2564 <dbl>,
#> # visits_by_110635 <int>, visits_by_126614 <int>, visits_by_100751 <int>,
#> # inst_110635 <chr>, inst_126614 <chr>, inst_100751 <chr>
nrow(df_CA)
#> [1] 713

57 / 69

Subsetting Data Frames with [] and $, NA Observations

▶ When extracting observations via subsetting operators, resulting dataframe will
include rows where condition is TRUE ; as well as NA values.

▶ To remove missing values, ask for values that only evaluate to TRUE explicitly via
which()

▶ Task: Show all public high schools with at least $50k median household incomes
tidyverse
df_tv <- filter(df_event, event_type == "public hs" & med_inc>=50000)
nrow(df_tv) #9,941 obs

base R without which()
df_b1 <- df_event[df_event$event_type == "public hs" & df_event$med_inc>=50000,]
nrow(df_b1) #10,016 obs
view(df_b1) #NAs sorted at the end of column

base R with which()
df_b2 <- df_event[which(df_event$event_type == "public hs" & df_event$med_inc>=50000),]
nrow(df_b2) #9,941 obs, same as tidyverse way

58 / 69

Subsetting using the subset function

59 / 69

Subset function

The subset() is a base R function and easiest way to “filter” observations

▶ can be combined with select() base R function to select variables
▶ can be combined with count() for quick comparisons or assignment to create

new objects
?subset

Syntax: subset(x, subset, select, drop = FALSE)
▶ x is object to be subsetted
▶ subset is the logical expression(s) indicating elements (rows) to keep
▶ select indicates columns to select from data frame (if argument is not used

default will keep all columns)
▶ drop takes TRUE or FALSE if you want to preserve the original dimensions (only

need to worry about dataframes when your subset output is a single column)

60 / 69

Subset function, examples
▶ Show all public high schools that are at least 50% Latinx (hispanic in data)

student enrollment in California compared to number of schools that received visit
by UC Berkeley

#public high schools with at least 50% Latinx student enrollment
count(subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 713

count(subset(df_school, school_type == "public" & pct_hispanic >= 50
& state_code == "CA" & visits_by_110635 >= 1))

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 100

Can also use the %in% operator… -Show visits by Bama in multiple states
count(subset(df_school, visits_by_100751 >= 1 & state_code %in% c("MA","ME","VT")))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 108

61 / 69

Subset function, examples

▶ Create new df with all public high schools that are at least 50% Latinx student
enrollment in California AND only keep variables name and address

#public high schools with at least 50% Latinx student enrollment
df_CA2 <- subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA", select = c(name, address))
head(df_CA2)
#> # A tibble: 6 x 2
#> name address
#> <chr> <chr>
#> 1 Tustin High 1171 El Camino Real
#> 2 Bell Gardens High 6119 Agra St.
#> 3 Santa Ana High 520 W. Walnut
#> 4 Warren High 8141 De Palma St.
#> 5 Hollywood Senior High 1521 N. Highland Ave.
#> 6 Venice Senior High 13000 Venice Blvd.
nrow(df_CA2)
#> [1] 713

62 / 69

Sorting data

63 / 69

Base R sort() for vectors

sort() is a base R function that sorts vectors - Syntax:
sort(x, decreasing=FALSE, ...) ; where x is object being sorted - By default it

sorts in ascending order (low to high) - Need to set decreasing argument to TRUE to
sort from high to low
?sort()
x<- c(31, 5, 8, 2, 25)
sort(x)
#> [1] 2 5 8 25 31
sort(x, decreasing = TRUE)
#> [1] 31 25 8 5 2

64 / 69

Base R order() for dataframes

order() is a base R function that sorts vectors

▶ Syntax: order(..., na.last = TRUE, decreasing = FALSE)
▶ where ... are variable(s) to sort by
▶ By default it sorts in ascending order (low to high)
▶ Need to set decreasing argument to TRUE to sort from high to low

Descending argument only works when we want either one (and only) variable
descending or all variables descending (when sorting by multiple vars)

▶ use - when you want to indicate which variables are descending while using the
default ascending sorting

df_event[order(df_event$event_date),]
df_event[order(df_event$event_date, df_event$total_12),]

#sort descending via argument
df_event[order(df_event$event_date, decreasing = TRUE),]
df_event[order(df_event$event_date, df_event$total_12, decreasing = TRUE),]

#sorting by both ascending and descending variables
df_event[order(df_event$event_date, -df_event$total_12),]

65 / 69

Tidyverse vs base R examples [resource for you]

66 / 69

Extracting columns (variables)

-Create a new dataframe by extracting the columns instnm , event_date ,
event_type from df_event. Use the names() function to show what

columns/variables are in the newly created dataframe.
tidyverse
df_event_tv <- select(df_event, instnm, event_date, event_type)
names(df_event_tv)
#> [1] "instnm" "event_date" "event_type"

base R using subsetting operators
df_event_br1 <- df_event[, c("instnm", "event_date", "event_type")]
names(df_event_br1)
#> [1] "instnm" "event_date" "event_type"

base R using subset() function
df_event_br2 <- subset(df_event, select=c(instnm, event_date, event_type))
names(df_event_br2)
#> [1] "instnm" "event_date" "event_type"

67 / 69

Extracting observations

-Create a new dataframe from df_schools that includes out-of-state public high
schools with 50%+ Latinx student enrollment that received at least one visit by the
University of California Berkeley.
tidyverse
df_school_tv <- filter(df_school, state_code != "CA" & school_type == "public" & pct_hispanic >= 50 & visits_by_110635 >=1)
nrow(df_school_tv)
#> [1] 10

base R using subsetting operators
df_school_br1 <- df_school[which(df_school$state_code != "CA" & df_school$school_type == "public"

& df_school$pct_hispanic >= 50
& df_school$visits_by_110635 >=1),]

nrow(df_school_br1)
#> [1] 10

base R using subset() function
df_school_br2 <- subset(df_school, state_code != "CA" & school_type == "public" & pct_hispanic >= 50 & visits_by_110635 >=1)
nrow(df_school_br2)
#> [1] 10

68 / 69

Sorting observations

-Create a new dataframe from df_events that sorts by ascending by event_date ,
ascending event_state , and descending pop_total .

tidyverse
df_event_tv <- arrange(df_event, event_date, event_state, desc(pop_total))

base R using order() function
df_event_br1 <- df_event[order(df_event$event_date, df_event$event_state,

-df_event$pop_total),]

69 / 69

	Missing values [finish-up]
	Tidyverse vs. Base R
	Investigating data patterns via Tidyverse
	Select variables
	Filter rows
	Arrange rows

	Investigating data patterns using Base R
	Subsetting using subsetting operators
	Subsetting using the subset function
	Sorting data

	Tidyverse vs base R examples [resource for you]

