
Lecture 2: Investigating objects
Managing and Manipulating Data Using R

1 / 85

What we will do today

1. R Markdown

2. Using functions

3. Investigating objects [base R]
3.1 Variables names
3.2 View and print data
3.3 Missing values

4. Find homework groups

5. Investigating data patterns [tidyverse]
5.1 Select variables
5.2 Filter rows
5.3 Arrange rows

6. Appendix: directories and filepaths [for your reference]

2 / 85

Libraries we will use today

“Load” the package we will use today (output omitted)
library(tidyverse)

If package not yet installed, then must install before you load. Install in “console”
rather than .Rmd file

▶ Generic syntax: install.packages("package_name")
▶ Install “tidyverse”: install.packages("tidyverse")

Note: when we load package, name of package is not in quotes; but when we install
package, name of package is in quotes:

▶ install.packages("tidyverse")
▶ library(tidyverse)

3 / 85

R Markdown

4 / 85

What is R Markdown

▶ R Markdown documents embed R code, output associated with R code, and text
into one document

▶ An R Markdown document is a “ ‘Living’ document that updates every time you
compile [”knit”] it”

▶ R Markdown documents have the extension .Rmd
▶ can think of them as text files with the extension .Rmd rather than .txt

▶ At top of .Rmd file you specify the “output” style, which dictates what kind of
formatted document will be created

▶ e.g., html_document or pdf_document
▶ When you compile [“knit”] a .Rmd file, the resulting formatted document can be

an HTML document, a PDF document, an MS Word document, or many other
types

This slide borrows from Darin Christensen

5 / 85

How people use R Markdown

RMarkdown creates many types of static and dynamic/interactive documents
▶ Example of static policy report
▶ Example of dynamic/interactive presentation

How I use R Markdown
▶ journal manuscripts; reports; presentations; for taking notes when I am learning

new methods or reading an empirical paper
How we will be using R Markdown files in this class:

▶ homework you submit will be .Rmd files, with “output” style will be
html_document or pdf_document

▶ lectures we write are .Rmd files, where we the output style will be
beamer_presentation or html_document
▶ beamer_presentation is essentially a PDF document, where each page is a slide

6 / 85

https://emraresearch.org/sites/default/files/2019-03/joyce_report.pdf
https://ozanj.github.io/joyce_report/#/title

Creating RMarkdown documents

Do this with a partner
Approach for creating a RMarkdown document.

1. Point-and-click from within RStudio
▶ Click on File » New File » R Markdown » Document » choose HTML » click OK

▶ optional: add title (this is not the file name, just what appears at top of document)
▶ optional: add author name

▶ save the .Rmd file; File » Save As
▶ any file name
▶ recommend you save it in same folder you saved this lecture

▶ “Knit” the entire .Rmd file
▶ point-and-click OR shortcut: Cmd/Ctrl + Shift + k

7 / 85

Components of a .Rmd file

An RMarkdown (.Rmd) file consists of several parts
1. YAML header

▶ YAML stands for “yet another markup language”
▶ controls settings that apply to the whole document (e.g., “output” should be

html_document or pdf_document, whether to include table of contents, etc.)
▶ YAML header goes at very top of document
▶ starts with a line of three horizontal dashes --- ; ends with a line of three horizontal

dashes ---
2. Text in body of .Rmd file

▶ e.g., headings; description of results, etc.
3. R code chunks in body of .Rmd file

a <- c(2,4,6)
a
a-1

4. R output associated with code chunks
#> [1] 2 4 6
#> [1] 1 3 5

8 / 85

Comment: Running R code chunks vs. “knit” entire .Rmd file

Two ways to execute R commands in .Rmd file:
1. “Knit” entire .Rmd file

▶ shortcut: Cmd/Ctrl + Shift + k
2. “Run” code chunk or selected lines within code chunk

▶ Run selected line(s): Cmd/Ctrl + Enter
▶ Run current chunk: Cmd/Ctrl + Shift + Enter

Comment on default settings for RStudio:
▶ When you knit entire .Rmd file, “objects” created within .Rmd file will not be

available after file comples
▶ When you run code chunk (or selected lines in chunk), objects created by lines

you run will be in your “environment” until you remove them or quit R session

9 / 85

Output types of .Rmd file

Common/important output types:
▶ html_document: R Markdown originally designed to create HTML documents

▶ Most features/code in .Rmd files were written for html_document
▶ many of these features are available in other output types
▶ When learning R Markdown, best to start by learning html_document

▶ pdf_document: Requires installation of tinytex R package or LaTeX
(MiKTeX/MacTeX)

▶ How it works:
▶ You write .Rmd code;
▶ When you compile, this .Rmd code is transformed into LaTeX code
▶ LaTeX “engine” creates the formatted .pdf file

▶ Can include some of the same features available for html_document
▶ Can insert LaTeX commands in .Rmd file with pdf_document output

▶ beamer_presentation: Requires installation of LaTeX
▶ “beamer” is the name for presentations written in LaTeX
▶ essentially creates PDF of presentation slides
▶ Lectures for this class created with beamer_presentation output
▶ note: YAML header includes beamer_header.tex file, which creates some formatting

rules and additional commands

10 / 85

Learning more about R Markdown

Resources
▶ Cheat sheets and quick reference:

▶ Cheat Sheet
▶ Quick Reference [I prefer the quick reference]

▶ Chapters/books
▶ Chapter 27 of “R for Data Science” book
▶ R Markdown: The Definative Guide book [I prefer this book]

How you will learn R Markdown
▶ Lectures written as .Rmd file

▶ During class run “code chunks” and try to “knit” entire .Rmd file
▶ I’ll assign small amount of reading on R Markdown

▶ prior to next week:
▶ spend 15 minutes familiarizing yourself with Quick Reference
▶ Read section 3.1 of R Markdown: The Definative Guide, about creating html_document

▶ Homework must be written in .Rmd file
▶ you submit .Rmd file AND output of compiled file
▶ for next week, you will submit homework as html_document output

11 / 85

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
http://r4ds.had.co.nz/r-markdown.html
https://bookdown.org/yihui/rmarkdown/
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://bookdown.org/yihui/rmarkdown/html-document.html

Directory structure for this class

In order to be able to “knit” entire lectures [rather than just run specific code chunks]
make sure that you have the following directory structure:

▶ rclass
▶ lectures

▶ lecture1
▶ …
▶ lecture10
▶ beamer_header.tex

What is beamer_header.tex?
▶ A text file that contains LATEXcode
▶ This code creates formatting rules that are applied to all lecture slides
▶ If you go YAML header you will see:

includes:
in_header: ../beamer_header.tex

▶ This runs beamer_header.tex; assumes that beamer_header.tex is located one
level up from your current directory

▶ If you don’t have beamer_header.tex saved to appropriate place, you can
download it here LINK

▶ Note: we may revise beamer_header.tex as we work out formatting bugs

12 / 85

https://github.com/ozanj/rclass/raw/master/lectures/beamer_header.tex

Using functions

13 / 85

What are functions

Functions are pre-written bits of code that accomplish some task.

Functions generally follow three sequential steps:
1. take in an input object(s)
2. process the input.
3. return (A) a new object or (B) a visualizatoin (e.g., plot)

For example, sum() function calcualtes sum of elements in a vector
1. input. takes in a vector of elements (numeric or logical)
2. processing. Calculates the sum of elements
3. return. Returns numeric vector of length=1; value is sum of input vector

sum(c(1,2,3))
#> [1] 6
typeof(sum(c(1,2,3))) # type of object created by sum()
#> [1] "double"
length(sum(c(1,2,3))) # length of object created by sum()
#> [1] 1

#sum(c(TRUE,TRUE,FALSE))
#typeof(sum(c(TRUE,TRUE,FALSE))); length(sum(c(TRUE,TRUE,FALSE)))

14 / 85

Function syntax

Components of a function
▶ function name (e.g., sum() , length() , seq())
▶ function arguments

▶ Inputs that the function takes, which determine what function does
▶ can be vectors, data frames, logical statements, etc.

▶ In “function call” you specify values to assign to these function arguments
▶ e.g., sum(c(1,2,3))

▶ Separate arguments with a comma ,
▶ e.g., seq(10,15) Example: the sequence function, seq()

seq(10,15)
#> [1] 10 11 12 13 14 15

15 / 85

Function syntax: More on function arguments

Usually, function arguments have names
▶ e.g., the seq() function includes the arguments from , to , by
▶ when you call the function, you need to assign values to these arguments; but you

usually don’t have to specify the name of the argument
seq(from=10, to=20, by=2)
#> [1] 10 12 14 16 18 20
seq(10,20,2)
#> [1] 10 12 14 16 18 20

Many function arguments have “default values”, set by whoever wrote function
▶ if you don’t specify a value for that argument, the default value is inserted
▶ e.g., partial list of default values for seq() : seq(from=1, to=1, by=1)

seq()
#> [1] 1
seq(to=10)
#> [1] 1 2 3 4 5 6 7 8 9 10
seq(10) # R assigned value of 10 to "to" rather than "from" or "by"
#> [1] 1 2 3 4 5 6 7 8 9 10

16 / 85

Function arguments, the na.rm argument

When R performs calculation and an input has value NA , output value is NA
5+4+NA
#> [1] NA

R functions that perform calculations often have argument named na.rm

▶ na.rm argument asks whether to remove NA values prior to calculation
▶ For most functions, default value is na.rm = FALSE

▶ This means “do not remove NAs ” prior to calculation
▶ e.g., default values for sum() function: sum(..., na.rm = FALSE)

sum(c(1,2,3,NA), na.rm = FALSE) # default value
#> [1] NA
sum(c(1,2,3,NA))
#> [1] NA

▶ if you specify, na.rm = TRUE , NA values removed prior to calculation
sum(c(1,2,3,NA), na.rm = TRUE)
#> [1] 6

17 / 85

Help files for functions

To see help file on a function, type ?function_name without parentheses
?sum
?seq

Contents of help files
▶ Description. What the function does
▶ Usage. Syntax, including default values for arguments
▶ Arguments. Description of function arguments
▶ Details. Details and idiosyncracies of about how the function works.
▶ Value. What (object) the function “returns”

▶ e.g., sum() returns vector of length 1 whose value is sum of input vector
▶ References. Additional reading
▶ See Also. Related functions
▶ Examples. Examples of function in action
▶ Bottom of help file identifies the package the function comes from

Practice!
▶ when you encounter new function, spend two minutes reading help file
▶ over time, help files will feel less cryptic and will start to feel helpful

18 / 85

Function arguments, the dot-dot-dot (...) argument

On help file for many functions, you will see an argument called ... , referred to as
the “dot-dot-dot” argument
?sum
?seq

“Dot-dot-dot” arguments have several uses. What you should know for now:
▶ ... refers to arguments that are “un-named”; but user can specify values

▶ e.g., default syntax for sum() : sum(..., na.rm = FALSE)
▶ argument na.rm is “named” (name is na.rm); argument ... un-named

▶ ... used to allow a function to take an arbitrary number of arguments:
#Here, sum function takes 1 un-named argument, specifically c(10,5,NA)
sum(c(10,5,NA),na.rm=TRUE)
#> [1] 15

#Here the sum function takes 3 un-named arguments
sum(10,5,NA,na.rm=TRUE)
#> [1] 15

#Here the sum function takes 5 un-named arguments
sum(10,5,10,20,NA,na.rm=TRUE)
#> [1] 45

19 / 85

Investigating objects [base R]

20 / 85

Load .Rdata data frames we will use today

Data on off-campus recruiting events by public universities
▶ Data frame object df_event

▶ One observation per university, recruiting event
▶ Data frame object df_school

▶ One observation per high school (visited and non-visited)
rm(list = ls()) # remove all objects in current environment

getwd()
#> [1] "C:/Users/ozanj/Documents/rclass/lectures/lecture2"
#load dataset with one obs per recruiting event
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_event_somevars.RData"))
#load("../../data/recruiting/recruit_event_somevars.Rdata")

#load dataset with one obs per high school
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_school_somevars.RData"))
#load("../../data/recruiting/recruit_school_somevars.Rdata")

21 / 85

Listing objects

Files in your working directory

list.files() function lists files in your current working directory
▶ if you run this code from .Rmd file, working directory is location .Rmd file is stored

getwd() # what is your current working directory
#> [1] "C:/Users/ozanj/Documents/rclass/lectures/lecture2"
list.files()
#> [1] "fp1.JPG" "fp2.JPG"
#> [3] "lecture2.1_ucla.pdf" "lecture2.1_ucla.Rmd"
#> [5] "lecture2.1_ucla.tex" "lecture2.pdf"
#> [7] "lecture2.Rmd" "lecture2.tex"
#> [9] "lecture2_test.Rmd" "lecture2_test.tex"
#> [11] "lecture2_ucla.pdf" "lecture2_ucla.Rmd"
#> [13] "lecture2_ucla.tex" "problemset2.html"
#> [15] "problemset2.Rmd" "problemset2_solutions.html"
#> [17] "problemset2_solutions.html.zip" "problemset2_solutions.Rmd"
#> [19] "sample.html" "sample.Rmd"
#> [21] "sample_simple_rmarkdown.txt" "text"
#> [23] "transform-logical.png"

22 / 85

Objects currently open in your R session

Listing objects currently open in your R session

ls() function lists objects currently open in R
x <- "hello!"
ls() # Objects open in R
#> [1] "df_event" "df_school" "x"

Removing objects currently open in your R session

rm() function removes specified objects open in R
rm(x)
ls()
#> [1] "df_event" "df_school"

Command to remove all objects open in R (I don’t run it)
rm(list = ls())

23 / 85

Describing objects, focus on data frames

type and length of a data frame object
▶ Recall that a data frame is an object where type is a list
▶ Length of an object is the number of elements

▶ When object is a data frame, number of elements = number of variables
typeof(df_event)
#> [1] "list"
length(df_event) # = num elements = num columns
#> [1] 33

Number of columns and rows of data frame object
▶ number of columns = number of elements = number of variables
▶ number of rows = number of observations

ncol(df_event) # num columns = num variables
#> [1] 33
nrow(df_event) # num rows = num observations
#> [1] 18680
dim(df_event) # shows number rows by columns
#> [1] 18680 33

str() provides compact information on structure any object (output omitted)
str(df_event)

24 / 85

Variables names

25 / 85

Variable names

names() function lists names of elements in an object
?names

Recall that a data frame is an object where type is a list and each element is named
When object is a data frame:

▶ each element is a variable
▶ each element name is a variable name

names(df_event)
#> [1] "instnm" "univ_id" "instst"
#> [4] "pid" "event_date" "event_type"
#> [7] "zip" "school_id" "ipeds_id"
#> [10] "event_state" "event_inst" "med_inc"
#> [13] "pop_total" "pct_white_zip" "pct_black_zip"
#> [16] "pct_asian_zip" "pct_hispanic_zip" "pct_amerindian_zip"
#> [19] "pct_nativehawaii_zip" "pct_tworaces_zip" "pct_otherrace_zip"
#> [22] "fr_lunch" "titlei_status_pub" "total_12"
#> [25] "school_type_pri" "school_type_pub" "g12offered"
#> [28] "g12" "total_students_pub" "total_students_pri"
#> [31] "event_name" "event_location_name" "event_datetime_start"

26 / 85

Variable names

Refer to specific named elements of an object using this syntax:
▶ object_name$element_name

When object is data frame, refer to specific variables using this syntax:
▶ data_frame_name$varname
▶ This approach to isolating variables very useful for investigating data

#df_event$instnm
typeof(df_event$instnm)
#> [1] "character"
typeof(df_event$med_inc)
#> [1] "double"

27 / 85

Variable names
Data frames are lists with following criteria:

▶ each element of list is a vector; each element of list is a variable
▶ length of data frame = number of variables

length(df_event)
#> [1] 33
nrow(df_event)
#> [1] 18680
#str(df_event)

▶ each element of the list (i.e., variable) has the same length
▶ Length of each variable is equal to number of observations in data frame

typeof(df_event$event_state)
#> [1] "character"
length(df_event$event_state)
#> [1] 18680
str(df_event$event_state)
#> chr [1:18680] "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" ...

typeof(df_event$med_inc)
#> [1] "double"
length(df_event$med_inc)
#> [1] 18680
str(df_event$med_inc)
#> num [1:18680] 71714 89122 70137 70137 71024 ...

28 / 85

Variable names

The object df_school has one obs per high school

▶ variable visits_by_100751 shows number of visits by University of Alabama to
each high school

▶ like all variables in a data frame, the var visits_by_100751 is just a vector
typeof(df_school$visits_by_100751)
#> [1] "integer"
length(df_school$visits_by_100751) # num elements in vector = num obs
#> [1] 21301
str(df_school$visits_by_100751)
#> int [1:21301] 0 0 0 0 0 0 0 0 0 0 ...
sum(df_school$visits_by_100751) # sum of values of var across all obs
#> [1] 3338

We perform calculations on a variable like we would on any vector of same type
v <- c(2,4,6)
typeof(v)
#> [1] "double"
length(v)
#> [1] 3
sum(v)
#> [1] 12

29 / 85

View and print data

30 / 85

Viewing and printing data frames

Three ways to view/print a data frame object
1. Simply type the object name (output omitted)

▶ number of observations and rows printed depend on YAML header settings and on
attributes (discussed next week) of the object

df_event

2. Use the View() function to view data in a browser
View(df_event)

3. head() to show the first n rows
#?head
head(df_event, n=5)

31 / 85

Viewing and printing data frames

obj_name[<rows>,<cols>] to print specific rows and columns of data frame

▶ particularly powerful when combined with sequences (e.g., 1:10)

Examples:
▶ Print first five rows, all vars

df_event[1:5,]

▶ Print first five rows and first three columns
df_event[1:5, 1:3]

▶ Print first three columns of the 100th observation
df_event[100, 1:3]

▶ Print the 50th observation, all variables
df_event[50,]

32 / 85

Viewing and printing data

type obj_name$var_name to print specific elements (i.e., vars) in data frame
df_event$zip

▶ recall that these elements are vectors, with length = number of obs
typeof(df_event$zip)
#> [1] "character"
length(df_event$zip)
#> [1] 18680

▶ obj_name$var_name syntax can be combined with sequences
▶ vectors don’t have “rows” or “columns”; they just have elements
▶ so use sequence to identify which elements you want to print

df_event$event_state[1:10]
#> [1] "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA"
df_event$event_type[6:10]
#> [1] "private hs" "private hs" "public hs" "private hs" "public hs"

Can also print multiple variables using combine() function
c(df_event$event_state[1:5],df_event$event_type[1:5])
#> [1] "MA" "MA" "MA" "MA" "MA"
#> [6] "public hs" "public hs" "public hs" "public hs" "public hs"

33 / 85

Exercise

Create a printing exercise using the df_school data frame

1. Use obj_name[<rows>,<cols>] to print the first 5 rows and 3 columns of data
frame

2. Use head() to print first 4 observations
3. Use obj_name$var_name[1:10] to print the first 10 observations of a variable
4. Use combine() to print the first 3 observations of variables “school_type” &

“name”

34 / 85

Solution

1. Use obj_name[<rows>,<cols>] to print the first 5 rows and 3 columns of data
frame

df_school[1:5,1:3]
#> # A tibble: 5 x 3
#> state_code school_type ncessch
#> <chr> <chr> <chr>
#> 1 AK public 020000100208
#> 2 AK public 020000100211
#> 3 AK public 020000100212
#> 4 AK public 020000100213
#> 5 AK public 020000300216

35 / 85

Solution

2. Use head() to print first 4 observations
head(df_school, n=4)
#> # A tibble: 4 x 26
#> state_code school_type ncessch name address city zip_code pct_white
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 AK public 020000~ Beth~ 1006 R~ Beth~ 99559 11.8
#> 2 AK public 020000~ Ayag~ 106 Vi~ Kong~ 99559 0
#> 3 AK public 020000~ Kwig~ 108 Vi~ Kwig~ 99622 0
#> 4 AK public 020000~ Nels~ 118 Vi~ Toks~ 99637 0
#> # ... with 18 more variables: pct_black <dbl>, pct_hispanic <dbl>,
#> # pct_asian <dbl>, pct_amerindian <dbl>, pct_other <dbl>,
#> # num_fr_lunch <dbl>, total_students <dbl>, num_took_math <dbl>,
#> # num_prof_math <dbl>, num_took_rla <dbl>, num_prof_rla <dbl>,
#> # avgmedian_inc_2564 <dbl>, visits_by_110635 <int>,
#> # visits_by_126614 <int>, visits_by_100751 <int>, inst_110635 <chr>,
#> # inst_126614 <chr>, inst_100751 <chr>

36 / 85

Solution

3. Use obj_name$var_name[1:10] to print the first 10 observations of a variable
df_school$name[1:10]
#> [1] "Bethel Regional High School" "Ayagina'ar Elitnaurvik"
#> [3] "Kwigillingok School" "Nelson Island Area School"
#> [5] "Alakanuk School" "Emmonak School"
#> [7] "Hooper Bay School" "Ignatius Beans School"
#> [9] "Pilot Station School" "Kotlik School"

37 / 85

Solution

4. Use combine() to print the first 3 observations of variables “school_type” &
“name”

c(df_school$school_type[1:3],df_school$name[1:3])
#> [1] "public" "public"
#> [3] "public" "Bethel Regional High School"
#> [5] "Ayagina'ar Elitnaurvik" "Kwigillingok School"

38 / 85

Missing values

39 / 85

Missing values
Missing values have the value NA

▶ NA is a special keyword, not the same as the character string "NA"

use is.na() function to determine if a value is missing

▶ is.na() returns a logical vector
is.na(5)
#> [1] FALSE
is.na(NA)
#> [1] TRUE
is.na("NA")
#> [1] FALSE
typeof(is.na("NA")) # example of a logical vector
#> [1] "logical"

nvector <- c(10,5,NA)
is.na(nvector)
#> [1] FALSE FALSE TRUE
typeof(is.na(nvector)) # example of a logical vector
#> [1] "logical"

svector <- c("e","f",NA,"NA")
is.na(svector)
#> [1] FALSE FALSE TRUE FALSE

40 / 85

Missing values are “contagious”

What does “contagious” mean?
▶ operations involving a missing value will yield a missing value

7>5
#> [1] TRUE
7>NA
#> [1] NA
0==NA
#> [1] NA
2*c(0,1,2,NA)
#> [1] 0 2 4 NA
NA*c(0,1,2,NA)
#> [1] NA NA NA NA

41 / 85

Functions and missing values example, table()

table() function is useful for investigating categorical variables
str(df_event$event_type)
#> chr [1:18680] "public hs" "public hs" "public hs" "public hs" ...
table(df_event$event_type)
#>
#> 2yr college 4yr college other private hs public hs
#> 951 531 2001 3774 11423

42 / 85

Functions and missing values example, table()
By default table() ignores NA values
#?table
str(df_event$school_type_pri)
#> int [1:18680] NA NA NA NA NA 1 1 NA 1 NA ...
table(df_event$school_type_pri)
#>
#> 1 2 5
#> 3765 8 1

useNA argument controls if table includes counts of NA s. Allowed values:
▶ never (“no”) [DEFAULT VALUE]
▶ only if count is positive (“ifany”);
▶ even for zero counts (“always”)”

nrow(df_event)
#> [1] 18680
table(df_event$school_type_pri, useNA="always")
#>
#> 1 2 5 <NA>
#> 3765 8 1 14906

Broader point: Most functions that create descriptive statistics have options about
how to treat missing values‘

▶ When investigating data, good practice to always show missing values

43 / 85

Find homework groups

44 / 85

What we’ll do to choose homework groups

▶ Meet new people (10 minutes of speed-dating!)
▶ find someone in class you don’t know and talk to them for two minutes about anything

▶ e.g., where you from, what program, what are research interests, what you like doing outside of
school, work

▶ Enrolled students choose homework groups (10 minutes)
▶ one side of room for students who want to work collaboratively on problem sets
▶ one side of room for students who want to work mostly on their own (e.g,. due to full

work/family schedule);
▶ must be groups of 3
▶ cannot have more than 2 people from same academic program (e.g., HEOC, HDP)

▶ Auditors not part of “official” homework groups of 3, but they are welcome to join
any homework group or form their own homework group

Recommendation: Use Zoom for group meetings!
▶ https://ucla.zoom.us/

45 / 85

https://ucla.zoom.us/

Investigating data patterns [tidyverse]

46 / 85

Introduction to the dplyr library

dplyr , a package within the tidyverse suite of packages, provide tools for
manipulating data frames

▶ Wickham describes functions within dplyr as a set of “verbs” that fall in the
broader categories of subsetting, sorting, and transforming

Today Upcoming weeks
Subsetting data Transforming data
- select() variables - mutate() creates new variables
- filter() observations - summarize() calculates across rows
Sorting data - group_by() to calculate across rows within groups
- arrange()

All dplyr verbs (i.e., functions) work as follows

1. first argument is a data frame
2. subsequent arguments describe what to do with variables and observations in data

frame
▶ refer to variable names without quotes

3. result of the function is a new data frame

47 / 85

Select variables

48 / 85

Select variables using select() function
Printing observations is key to investigating data, but datasets often have hundreds,
thousands of variables
select() function selects columns of data (i.e., variables) you specify
▶ first argument is the name of data frame object
▶ remaining arguments are variable names, which are separated by commas and

without quotes

Without assignment (<-), select() by itself simply prints selected vars
#?select
select(df_event,instnm,event_date,event_type,event_state,med_inc)
#> # A tibble: 18,680 x 5
#> instnm event_date event_type event_state med_inc
#> <chr> <date> <chr> <chr> <dbl>
#> 1 UM Amherst 2017-10-12 public hs MA 71714.
#> 2 UM Amherst 2017-10-04 public hs MA 89122.
#> 3 UM Amherst 2017-10-25 public hs MA 70136.
#> 4 UM Amherst 2017-10-26 public hs MA 70136.
#> 5 Stony Brook 2017-10-02 public hs MA 71024.
#> 6 USCC 2017-09-18 private hs MA 71024.
#> 7 UM Amherst 2017-09-18 private hs MA 71024.
#> 8 UM Amherst 2017-09-26 public hs MA 97225
#> 9 UM Amherst 2017-09-26 private hs MA 97225
#> 10 UM Amherst 2017-10-12 public hs MA 77800.
#> # ... with 18,670 more rows

49 / 85

Select variables using select() function
Recall that all dplyr functions (e.g., select()) return a new data frame object

▶ type equals “list”
▶ length equals number of vars you select

typeof(select(df_event,instnm,event_date,event_type,event_state,med_inc))
#> [1] "list"
length(select(df_event,instnm,event_date,event_type,event_state,med_inc))
#> [1] 5

glimpse() : tidyverse function for viewing data frames

▶ a cross between str() and simply printing data
?glimpse
glimpse(df_event)

glimpse() a select() set of variables
glimpse(select(df_event,instnm,event_date,event_type,event_state,med_inc))
#> Observations: 18,680
#> Variables: 5
#> $ instnm <chr> "UM Amherst", "UM Amherst", "UM Amherst", "UM Amhe...
#> $ event_date <date> 2017-10-12, 2017-10-04, 2017-10-25, 2017-10-26, 2...
#> $ event_type <chr> "public hs", "public hs", "public hs", "public hs"...
#> $ event_state <chr> "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "M...
#> $ med_inc <dbl> 71713.5, 89121.5, 70136.5, 70136.5, 71023.5, 71023...

50 / 85

Select variables using select() function

With assignment (<-), select() creates a new object containing only the variables
you specify
event_small <- select(df_event,instnm,event_date,event_type,event_state,med_inc)

glimpse(event_small)
#> Observations: 18,680
#> Variables: 5
#> $ instnm <chr> "UM Amherst", "UM Amherst", "UM Amherst", "UM Amhe...
#> $ event_date <date> 2017-10-12, 2017-10-04, 2017-10-25, 2017-10-26, 2...
#> $ event_type <chr> "public hs", "public hs", "public hs", "public hs"...
#> $ event_state <chr> "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "M...
#> $ med_inc <dbl> 71713.5, 89121.5, 70136.5, 70136.5, 71023.5, 71023...

51 / 85

Select
select() can use “helper functions” starts_with() , contains() , and
ends_with() to choose columns

?select

Example:
#names(df_event)

select(df_event,instnm,starts_with("event"))
#> # A tibble: 18,680 x 8
#> instnm event_date event_type event_state event_inst event_name
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 UM Am~ 2017-10-12 public hs MA In-State Amherst-P~
#> 2 UM Am~ 2017-10-04 public hs MA In-State Hampshire~
#> 3 UM Am~ 2017-10-25 public hs MA In-State Chicopee ~
#> 4 UM Am~ 2017-10-26 public hs MA In-State Chicopee ~
#> 5 Stony~ 2017-10-02 public hs MA Out-State Easthampt~
#> 6 USCC 2017-09-18 private hs MA Out-State Williston~
#> 7 UM Am~ 2017-09-18 private hs MA In-State Williston~
#> 8 UM Am~ 2017-09-26 public hs MA In-State Granby Jr~
#> 9 UM Am~ 2017-09-26 private hs MA In-State MacDuffie~
#> 10 UM Am~ 2017-10-12 public hs MA In-State Smith Aca~
#> # ... with 18,670 more rows, and 2 more variables:
#> # event_location_name <chr>, event_datetime_start <dttm>

52 / 85

Rename variables

rename() function renames variables within a data frame object

Syntax:
▶ rename(obj_name, new_name = old_name,...)

rename(df_event, g12_offered = g12offered,
titlei = titlei_status_pub)

names(df_event)

Variable names do not change permanently unless we combine rename with
assignment

rename_event <- rename(df_event, g12_offered = g12offered, titlei = titlei_status_pub)
names(rename_event)
rm(rename_event)

53 / 85

Filter rows

54 / 85

The filter() function

filter() allows you to select observations based on values of variables
▶ Arguments

▶ first argument is name of data frame
▶ subsequent arguments are logical expressions to filter the data frame
▶ Multiple expressions separated by commas work as AND operators (e.g., condtion 1

TRUE AND condition 2 TRUE)
▶ What is the result of a filter() command?

▶ filter() returns a data frame consisting of rows where the condition is TRUE
?filter

Example from data frame object df_school , each obs is a high school

▶ Show all obs where the high school received 1 visit from UC Berkeley (110635)
[output omitted]

filter(df_school,visits_by_110635 == 1)

Note that resulting object is list, consisting of obs where condition TRUE
nrow(df_school)
#> [1] 21301
nrow(filter(df_school,visits_by_110635 == 1))
#> [1] 528

55 / 85

Filter, character variables

Use single quotes '' or double quotes "" to refer to values of character variables
glimpse(select(df_school, school_type,state_code))
#> Observations: 21,301
#> Variables: 2
#> $ school_type <chr> "public", "public", "public", "public", "public", ...
#> $ state_code <chr> "AK", "AK", "AK", "AK", "AK", "AK", "AK", "AK", "A...

Identify all private high schools in CA that got 1 visit by particular universities
▶ UC-Berkeley (ID=110635)

filter(df_school,visits_by_110635 == 1, school_type == "private",
state_code == "CA")

▶ University of Alabama (ID=100751)
filter(df_school,visits_by_100751 == 1, school_type == "private",

state_code == "CA")

▶ Visited once by Berkeley and University of Alabama
filter(df_school,visits_by_100751 == 1, visits_by_110635 == 1,

school_type == "private", state_code == "CA")

56 / 85

Logical operators for comparisons

Symbol Meaning
== Equal to
!= Not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
& AND
| OR
%in includes

Figure 1: “Boolean” operations, x=left circle, y=right circle, from Wichkam (2018)

57 / 85

Filters and comparisons, Demonstration
Schools visited by Bama (100751) and/or Berkeley (110635)
#berkeley and bama
filter(df_school,visits_by_100751 >= 1, visits_by_110635 >= 1)
filter(df_school,visits_by_100751 >= 1 & visits_by_110635 >= 1) # same same
#berkeley or bama
filter(df_school,visits_by_100751 >= 1 | visits_by_110635 >= 1)

Apply count() function on top of filter() function to count the number of
observations that satisfy criteria

▶ Avoids printing individual observations
#Number of schools that git visit by Berkeley AND Bama
count(filter(df_school,visits_by_100751 >= 1 & visits_by_110635 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 247
#Number of schools that git visit by Berkeley OR Bama
count(filter(df_school,visits_by_100751 >= 1 | visits_by_110635 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 2763

58 / 85

Filters and comparisons, >=
Number of public high schools that are at least 50% Black in Alabama compared to
number of schools that received visit by Bama
#at least 50% black
count(filter(df_school, school_type == "public", pct_black >= 50,

state_code == "AL"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 86
count(filter(df_school, school_type == "public", pct_black >= 50,

state_code == "AL", visits_by_100751 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 21
#at least 50% white
count(filter(df_school, school_type == "public", pct_white >= 50,

state_code == "AL"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 238
count(filter(df_school, school_type == "public", pct_white >= 50,

state_code == "AL", visits_by_100751 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 82

59 / 85

Filters and comparisons, not equals (!=)

Count the number of high schools visited by University of Colorado (126614) that are
not located in CO

#number of high schools visited by U Colorado
count(filter(df_school, visits_by_126614 >= 1))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1056

#number of high schools visited by U Colorado not located in CO
count(filter(df_school, visits_by_126614 >= 1, state_code != "CO"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 873
#number of high schools visited by U Colorado located in CO
#count(filter(df_school, visits_by_126614 >= 1, state_code == "CO"))

60 / 85

Filters and comparisons, %in% operator

What if you wanted to count the number of schools visited by Bama (100751) in a
group of states?
count(filter(df_school,visits_by_100751 >= 1, state_code == "MA" |

state_code == "VT" | state_code == "ME"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 108

Easier way to do this is with %in% operator
count(filter(df_school,visits_by_100751 >= 1, state_code %in% c("MA","ME","VT")))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 108

Select the private high schools that got either 2 or 3 visits from Bama
count(filter(df_school, visits_by_100751 %in% 2:3, school_type == "private"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 183

61 / 85

Identifying data type and possible values helpful for filtering
▶ class() and str() shows data type of a variable
▶ table() to show potential values of categorical variables

class(df_event$event_type)
#> [1] "character"
str(df_event$event_type)
#> chr [1:18680] "public hs" "public hs" "public hs" "public hs" ...
table(df_event$event_type, useNA="always")
#>
#> 2yr college 4yr college other private hs public hs <NA>
#> 951 531 2001 3774 11423 0
class(df_event$event_state)
#> [1] "character"
str(df_event$event_state) # double quotes indicate character
#> chr [1:18680] "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" ...
class(df_event$med_inc)
#> [1] "numeric"
str(df_event$med_inc)
#> num [1:18680] 71714 89122 70137 70137 71024 ...

Now that we know event_type is a character, we can filter values
count(filter(df_event, event_type == "public hs", event_state =="CA"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1100
#below code would return an error because variables are character
#count(filter(df_event, event_type == public hs, event_state ==CA))

62 / 85

Filtering and missing values
Wickham (2018) states:

▶ “ filter() only includes rows where condition is TRUE; it excludes both
FALSE and NA values. To preserve missing values, ask for them explicitly:”

Investigate var df_event$fr_lunch , number of free/reduced lunch students

▶ only available for visits to public high schools
#visits to public HS with less than 50 students on free/reduced lunch
count(filter(df_event,event_type == "public hs", fr_lunch<50))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 910
#visits to public HS, where free/reduced lunch missing
count(filter(df_event,event_type == "public hs", is.na(fr_lunch)))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 26
#visits to public HS, where free/reduced is less than 50 OR is missing
count(filter(df_event,event_type == "public hs", fr_lunch<50 | is.na(fr_lunch)))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 936

63 / 85

Exercise

Task
▶ Create a filter to identify all the high schools that recieved 1 visit from UC

Berkeley (110635) AND 1 visit from CU Boulder (126614)[output omitted]

64 / 85

Solution

filter(df_school,visits_by_110635 == 1, visits_by_126614==1)

nrow(filter(df_school,visits_by_110635 == 1, visits_by_126614==1))
count(filter(df_school,visits_by_110635 == 1, visits_by_126614==1))

▶ Must assign to create new object based on filter
berk_boulder <- filter(df_school,visits_by_110635 == 1, visits_by_126614==1)
count(berk_boulder)

65 / 85

Exercises

Use the data from df_event, which has one observation for each off-campus recruiting
event a university attends

1. Count the number of events attended by the University of Pittsburgh (Pitt)
univ_id == 215293

2. Count the number of recruiting events by Pitt at public or private high schools
3. Count the number of recruiting events by Pitt at public or private high schools

located in the state of PA
4. Count the number of recruiting events by Pitt at public high schools not located

in PA where median income is less than 100,000
5. Count the number of recruiting events by Pitt at public high schools not located

in PA where median income is greater than or equal to 100,000
6. Count the number of out-of-state recruiting events by Pitt at private high schools

or public high schools with median income of at least 100,000

66 / 85

Solution

1. Count the number of events attended by the University of Pittsburgh (Pitt)
univ_id == 215293

count(filter(df_event, univ_id == 215293))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1225

2. Count the number of recruiting events by Pitt at public or private high schools
str(df_event$event_type)
#> chr [1:18680] "public hs" "public hs" "public hs" "public hs" ...
table(df_event$event_type, useNA = "always")
#>
#> 2yr college 4yr college other private hs public hs <NA>
#> 951 531 2001 3774 11423 0
count(filter(df_event, univ_id == 215293, event_type == "private hs" |

event_type == "public hs"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 1030

67 / 85

Solution

3. Count the number of recruiting events by Pitt at public or private high schools
located in the state of PA

count(filter(df_event, univ_id == 215293, event_type == "private hs" |
event_type == "public hs", event_state == "PA"))

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 262

4. Count the number of recruiting events by Pitt at public high schools not located
in PA where median income is less than 100,000

count(filter(df_event, univ_id == 215293, event_type == "public hs",
event_state != "PA", med_inc < 100000))

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 213

68 / 85

Solution

5. Count the number of recruiting events by Pitt at public high schools not located
in PA where median income is greater than or equal to 100,000

count(filter(df_event, univ_id == 215293, event_type == "public hs",
event_state != "PA", med_inc >= 100000))

#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 344

6. Count the number of out-of-state recruiting events by Pitt at private high schools
or public high schools with median income of at least 100,000

count(filter(df_event, univ_id == 215293, event_state != "PA",
(event_type == "public hs" & med_inc >= 100000) |

event_type == "private hs"))
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 553

69 / 85

Arrange rows

70 / 85

arrange() function

arrange() function “arranges” rows in a data frame; said different, it sorts
observations

Syntax: arrange(x,...)

▶ First argument, x , is a data frame
▶ Subsequent arguments are a “comma separated list of unquoted variable names”

arrange(df_event, event_date)

Data frame goes back to previous order unless you assign the new order
df_event
df_event <- arrange(df_event, event_date)
df_event

71 / 85

arrange() function

Ascending and descending order
▶ arrange() sorts in ascending order by default
▶ use desc() to sort a column by descending order

arrange(df_event, desc(event_date))

Can sort by multiple variables
arrange(df_event, univ_id, desc(event_date), desc(med_inc))

#sort by university and descending by size of 12th grade class; combine with select
select(arrange(df_event, univ_id, desc(g12)),instnm,event_type,event_date,g12)

72 / 85

arrange() , missing values sorted at the end
Missing values automatically sorted at the end, regardless of whether you sort
ascending or descending
Below, we sort by university, then by date of event, then by ID of high school
#by university, date, ascending school id
select(arrange(df_event, univ_id, desc(event_date), school_id),

instnm,event_date,event_type,school_id)

#by university, date, descending school id
select(arrange(df_event, univ_id, desc(event_date), desc(school_id)),

instnm,event_date,event_type,school_id)

Can sort by is.na to put missing values first
select(arrange(df_event, univ_id, desc(event_date), desc(is.na(school_id))),

instnm,event_date,event_type,school_id)
#> # A tibble: 18,680 x 4
#> instnm event_date event_type school_id
#> <chr> <date> <chr> <chr>
#> 1 Bama 2017-12-18 other <NA>
#> 2 Bama 2017-12-18 private hs A9106483
#> 3 Bama 2017-12-15 other <NA>
#> 4 Bama 2017-12-15 public hs 484473005095
#> 5 Bama 2017-12-15 public hs 062927004516
#> 6 Bama 2017-12-14 other <NA>
#> 7 Bama 2017-12-13 other <NA>
#> 8 Bama 2017-12-13 public hs 130387001439
#> 9 Bama 2017-12-13 private hs 00071151
#> 10 Bama 2017-12-13 public hs 063386005296
#> # ... with 18,670 more rows

73 / 85

Exercise, arranging

Use the data from df_event, which has one observation for each off-campus recruiting
event a university attends

1. Sort ascending by “univ_id” and descending by “event_date”
2. Select four variables in total and sort ascending by “univ_id” and descending by

“event_date”
3. Now using the same variables from above, sort by is.na to put missing values in

“school_id” first

74 / 85

Solution
1. Sort ascending by “univ_id” and descending by “event_date”

arrange(df_event, univ_id, desc(event_date))
#> # A tibble: 18,680 x 33
#> instnm univ_id instst pid event_date event_type zip school_id
#> <chr> <int> <chr> <int> <date> <chr> <chr> <chr>
#> 1 Bama 100751 AL 7115 2017-12-18 private hs 77089 A9106483
#> 2 Bama 100751 AL 7121 2017-12-18 other <NA> <NA>
#> 3 Bama 100751 AL 7114 2017-12-15 public hs 75165 48447300~
#> 4 Bama 100751 AL 7100 2017-12-15 public hs 93012 06292700~
#> 5 Bama 100751 AL 7073 2017-12-15 other 98027 <NA>
#> 6 Bama 100751 AL 7072 2017-12-14 other 98007 <NA>
#> 7 Bama 100751 AL 7118 2017-12-13 public hs 31906 13038700~
#> 8 Bama 100751 AL 7099 2017-12-13 private hs 90293 00071151
#> 9 Bama 100751 AL 7109 2017-12-13 public hs 92630 06338600~
#> 10 Bama 100751 AL 7071 2017-12-13 other 98032 <NA>
#> # ... with 18,670 more rows, and 25 more variables: ipeds_id <int>,
#> # event_state <chr>, event_inst <chr>, med_inc <dbl>, pop_total <dbl>,
#> # pct_white_zip <dbl>, pct_black_zip <dbl>, pct_asian_zip <dbl>,
#> # pct_hispanic_zip <dbl>, pct_amerindian_zip <dbl>,
#> # pct_nativehawaii_zip <dbl>, pct_tworaces_zip <dbl>,
#> # pct_otherrace_zip <dbl>, fr_lunch <dbl>, titlei_status_pub <fct>,
#> # total_12 <dbl>, school_type_pri <int>, school_type_pub <int>,
#> # g12offered <dbl>, g12 <dbl>, total_students_pub <dbl>,
#> # total_students_pri <dbl>, event_name <chr>, event_location_name <chr>,
#> # event_datetime_start <dttm>

75 / 85

Solution

2. Select four variables in total and sort ascending by “univ_id” and descending by
“event_date”

select(arrange(df_event, univ_id, desc(event_date)), univ_id, event_date,
instnm, event_type)

#> # A tibble: 18,680 x 4
#> univ_id event_date instnm event_type
#> <int> <date> <chr> <chr>
#> 1 100751 2017-12-18 Bama private hs
#> 2 100751 2017-12-18 Bama other
#> 3 100751 2017-12-15 Bama public hs
#> 4 100751 2017-12-15 Bama public hs
#> 5 100751 2017-12-15 Bama other
#> 6 100751 2017-12-14 Bama other
#> 7 100751 2017-12-13 Bama public hs
#> 8 100751 2017-12-13 Bama private hs
#> 9 100751 2017-12-13 Bama public hs
#> 10 100751 2017-12-13 Bama other
#> # ... with 18,670 more rows

76 / 85

Solution

3. Select the variables “univ_id”, “event_date”, and “school_id” and sort by
is.na to put missing values in “school_id” first.

select(arrange(df_event, univ_id, desc(event_date), desc(is.na(school_id))),
univ_id, event_date, school_id)

#> # A tibble: 18,680 x 3
#> univ_id event_date school_id
#> <int> <date> <chr>
#> 1 100751 2017-12-18 <NA>
#> 2 100751 2017-12-18 A9106483
#> 3 100751 2017-12-15 <NA>
#> 4 100751 2017-12-15 484473005095
#> 5 100751 2017-12-15 062927004516
#> 6 100751 2017-12-14 <NA>
#> 7 100751 2017-12-13 <NA>
#> 8 100751 2017-12-13 130387001439
#> 9 100751 2017-12-13 00071151
#> 10 100751 2017-12-13 063386005296
#> # ... with 18,670 more rows

77 / 85

Appendix: directories and filepaths [for your reference]

78 / 85

Working directory
(Current) Working directory

▶ the folder/directory in which you are currently working
▶ this is where R looks for files
▶ Files located in your current working directory can be accessed without specifying

a filepath because R automatically looks in this folder

Function getwd() shows current working directory
getwd()
#> [1] "C:/Users/ozanj/Documents/rclass/lectures/lecture2"

Command list.files() lists all files located in working directory
getwd()
#> [1] "C:/Users/ozanj/Documents/rclass/lectures/lecture2"
list.files()
#> [1] "fp1.JPG" "fp2.JPG"
#> [3] "lecture2.1_ucla.pdf" "lecture2.1_ucla.Rmd"
#> [5] "lecture2.1_ucla.tex" "lecture2.pdf"
#> [7] "lecture2.Rmd" "lecture2.tex"
#> [9] "lecture2_test.Rmd" "lecture2_test.tex"
#> [11] "lecture2_ucla.pdf" "lecture2_ucla.Rmd"
#> [13] "lecture2_ucla.tex" "problemset2.html"
#> [15] "problemset2.Rmd" "problemset2_solutions.html"
#> [17] "problemset2_solutions.html.zip" "problemset2_solutions.Rmd"
#> [19] "sample.html" "sample.Rmd"
#> [21] "sample_simple_rmarkdown.txt" "text"
#> [23] "transform-logical.png" 79 / 85

Working directory, “Code chunks” vs. “console” and “R scripts”
When you run code chunks in RMarkdown files (.Rmd), the working directory is set to
the filepath where the .Rmd file is stored
getwd()
#> [1] "C:/Users/ozanj/Documents/rclass/lectures/lecture2"
list.files()
#> [1] "fp1.JPG" "fp2.JPG"
#> [3] "lecture2.1_ucla.pdf" "lecture2.1_ucla.Rmd"
#> [5] "lecture2.1_ucla.tex" "lecture2.pdf"
#> [7] "lecture2.Rmd" "lecture2.tex"
#> [9] "lecture2_test.Rmd" "lecture2_test.tex"
#> [11] "lecture2_ucla.pdf" "lecture2_ucla.Rmd"
#> [13] "lecture2_ucla.tex" "problemset2.html"
#> [15] "problemset2.Rmd" "problemset2_solutions.html"
#> [17] "problemset2_solutions.html.zip" "problemset2_solutions.Rmd"
#> [19] "sample.html" "sample.Rmd"
#> [21] "sample_simple_rmarkdown.txt" "text"
#> [23] "transform-logical.png"

When you run code from the R Console or an R Script, the working directory is….

Command getwd() shows current working directory
getwd()
#> [1] "C:/Users/ozanj/Documents/rclass/lectures/lecture2"

80 / 85

Absolute vs. relative filepath

Absolute file path: The absolute file path is the complete list of directories needed to
locate a file or folder.
setwd("/Users/pm/Desktop/rclass/lectures/lecture2")

Relative file path: The relative file path is the path relative to your current
location/directory. Assuming your current working directory is in the “lecture2” folder
and you want to change your directory to the data folder, your relative file path would
look something like this:
setwd("../../data")

File path shortcuts

Key Description
~ tilde is a shortcut for user’s home directory (mine is my name pm)
../ moves up a level
../../ moves up two level

81 / 85

Exercise

1. Let’s create a folder on our desktop and name it red
2. Inside the red folder, create two subfolders named orange and yellow
3. Inside the yellow folder create another subfolder named green

Make sure to name these folders in lowercase.
You should have 1 folder on your desktop called red. Inside the red folder you have two
folders called orange and yellow. Inside the yellow folder you have a folder called green.
Here is a visual of how it should look…

82 / 85

File path visual

83 / 85

Exercise continued

Let’s say we want to get to the green folder using the absolute file path.
1. View your current working directory getwd()
2. Set your working directory to the green folder using the absolute file path
3. Now set your working directory to the orange folder using the relative file path
(hint: ../)

84 / 85

Solution

getwd()
setwd("~/Desktop/red/yellow/green")
getwd()
setwd("../../orange")
getwd()

85 / 85

	R Markdown
	Using functions
	Investigating objects [base R]
	Variables names
	View and print data
	Missing values

	Find homework groups
	Investigating data patterns [tidyverse]
	Select variables
	Filter rows
	Arrange rows

	Appendix: directories and filepaths [for your reference]

