Managing and Manipulating Data Using R

Lecture 1.2

1/37

. R basics

. Classification of objects

. Atomic vectors

. Lists

2/37

R basics

3/37

R as a calculator

5

#> [1] 5
5+2

#> [1] 7
10*3

#> [1] 30

4/37

Executing commands in R

5

#> [1] 5
5+2

#> [1] 7
103

#> [1] 30

Three ways to execute commands in R

1. Type/copy commands directly into the “console”
2. ‘code chunks’ in RMarkdown (.Rmd files)

P Can execute one command at a time, one chunk at a time, or “knit” the entire document
3. R scripts (.R files)

P This is just a text file full of R commands

P Can execute one command at a time, several commands at a time, or the entire script

5/37

Shortcuts you should learn for executing commands

5+2
#> [1] 7
103
#> [1] 30

Three ways to execute commands in R

1. Type/copy commands directly into the “console”
2. ‘code chunks’ in RMarkdown (.Rmd files)

P Cmd/Ctrl + Enter: execute highlighted line(s) within chunk
P Cmd/Ctrl + Shift + k: “knit” entire document

3. R scripts (.R files)
P Cmd/Ctrl + Enter: execute highlighted line(s)
P Cmd/Ctrl + Shift + Enter (without highlighting any lines): run entire script

6/37

Assignment

Assignment means creating a variable — or more generally, an “object” — and assigning
values to it

P <- is the assignment operator
P> in other languages = is the assignment operator
P good practice to put a space before and after assignment operator

Create an object and assign value

a<-5

a

#> [1] 5

b <- "yay!"
b

#> [1] "yay!"

7/37

Classification of objects

8/37

Some Note on Objects...

P The remainder of the lecture is a conceptual and practical introduction to
“objects” in R

P> This lecture is a broad overview that introduces some general programming and
applies some of these concepts to data

» IMPORTANT: The goal is to BEGIN developing familiarity with the concepts

that will be introduced in more detail in later weeks.
| don't expect you to understand or retain all this information perfectly
P> Just focus on trying to understand as much as you can..

9/37

Objects

Most statistical software (e.g., SPSS, Stata) operates on datasets, which consist of
rows of observations and columns of variables

P> Usually, these packages can open only one dataset at a time

R is an “object-oriented” programming language (like Python, JavaScript). So, what
is an "object”?

P> formal computer science definitions are confusing because they require knowledge
of concepts we haven't introduced yet
P More intuitively, | think objects as anything | assign values to

P For example, below, “ a " and “ b " are objects | assigned values to

a<-5

a

#> [1] 5

b <- "yay!"
b

#> [1] "yay!"

P Ben Skinner (my R guru) says “Objects are like boxes in which we can put things:
data, functions, and even other objects.”

10/37

Objects

P Objects can be categorized by “type” (which we will discuss today) and by “class”
(which we will discuss in later weeks)
P e.g., a date is an object with a numeric type and a date class
P a dataset is an object with a particular type and class
P There is no limit to the number of objects R can hold (except memory)
P R “functions” do different things to different types/classes of objects e.g., date
functions are meant to process objects with type=numeric and class=date; these
functions don’t work on objects with type=character (e.g., “yay!”)

11/37

Vectors

The fundamental object in R is the “vector”

P A vector is a collection of values
P The individual values within a vector are called “elements”
P Values in a vector can be numeric, character (e.g., "Apple”), or some other type

Below we use the combine function c() to create a numeric vector that contains
three elements

P> Help file says that c() “combines values into a vector or list"

?c

x <- c(4, 7, 9)
x

#> [1] 47 9

Vector where the elements are characters

animals <- c("lions", "tigers", "bears", "oh my")
animals

#> [1] "lions" ‘"tigers" "bears" "oh my"

12/37

Student task (10 minutes on your own)

Either in the R console:

1. Create a vector called v1 with three elements, where all the elements are
numbers. Then print the values.

2. Create a vector called v2 with four elements, where all the elements are
characters (i.e., enclosed in single " or double "”

3. Create a vector called v3 with five elements, where some elements are numeric
and some elements are characters. Then print the values.

quotes). Then print the values.

13/37

Formal classification of vectors in R

Here, | introduce the classification of vectors by Grolemund and Wickham
There are two broad types of vectors

1. Atomic vectors. An object that contains elements. There are six types of atomic

vectors:
P logical, integer, double, character, complex, and raw.
P Integer and double vectors are collectively known as numeric vectors.

2. Lists. Like atomic vectors, lists are objects that contain elements
elements within a list may be atomic vectors
P elements within a list may also be other lists; that is lists can contain other lists
P This sounds vague and confusing; I'll explain and give examples below

One difference between atomic vectors and lists: homogeneous vs. heterogeneous
elements

P> atomic vectors are homogeneous: all elements within atomic vector must be of
the same type

P> lists can be heterogeneous: e.g., one element can be an integer and another
element can be character

14/37

Developing an intuitive understanding of vector types

Grolemund and Wickham classification:

1. Atomic vectors. six types: logical, integer, double, character, complex, raw.
2. Lists

Problem with this classification:

P Not conceptually intutive
P> Technically, lists are a type of vector, but people often think of atomic vectors
and lists as fundamentally different things

Classification used by my R Guru Ben Skinner:

P data type: logical, numeric (integer and double), character, etc.
D data structure: vector, list, matrix, etc.

| find Skinner’s classification more intuitive conceptually. However, it isn't consistent
with R functions or the way R thinks about objects.

If you find this classification of data type and data structure helpful, totally fine to
think of objects in this way while you start to learn R.

15/37

Atomic vectors

16/37

“Length” of an atomic vector is the number of elements

For remainder of lecture, I'll use the term vector to refer to atomic vectors
Use length() function to examine vector length

x <- c(4, 7, 9
b

[1] 479
length(x)

#> [1] 3

animals <- c("lions", "tigers", "bears", "oh my")
animals

#> [1] "lions" "tigers" "bears" "oh my"
length(animals)

#> [1] 4

A single number (or a single string/character) is a vector with length==1
z <-5

length(z)

#> [1] 1

length("Tommy")

#> [1] 1

17/37

Data type of a vector
The “type” of an atomic vector refers to the elements within the vector.
While there are six “types” of actomic vectors, we'll focus on the following types:
P numeric:
P “integer” (e.g., 5)
P “double” (e.g., 5.5)
P character (e.g., “karina”)
P logical (e.g., TRUE, FALSE)

Use typeof() function to examine vector type
X

[1] 4 7 9

typeof (x)

#> [1] "double"

p <- c(1.5, 1.86)
p

#> [1] 1.5 1.6

typeof (p)

#> [1] "double"

animals

#> [1] "lions" "tigers" "bears" "oh my"
typeof (animals)

#> [1] "character”

18/37

Data type of a vector, numeric

Numeric vectors can be “integer” (e.g., 5) or “double” (e.g., 5.5)

typeof (1.5)
#> [1] "double"

R stores numbers as doubles by default.
x

#> [1] 4 79

typeof (x)

#> [1] "double"

To make an integer, place an L after the number:
typeof (5)

#> [1] "double"

typeof (5L)

#> [1] "integer"

19/37

Data type of a vector, character

In contrast to “numeric” data types which are used to store numbers, the “character”
data type is used to store strings of text.

P> Strings may contain any combination of numbers, letters, symbols, etc.
P> Character vectors are sometimes referred to as string vectors

When creating a vector where elements have type==character (or when referring to

the value of a string), place single “ or double quotes around text

P the text within quotes is the “string”
cl <- c("cat",'cash', 'candy cane')
cl
#> [1] "cat" "cash" "candy cane"
typeof (c1)
#> [1] "character"
length(cl)
#> [1] 3

Numeric values can also be stored as strings
C2 <- C(“l“ s ll2|v , ||3|I)

c2
#> [1] 111 n 77277 713”
typeof (c2)

#> [1] "character"

20/37

Data type of a vector, logical

Logical vectors can take three possible values: TRUE, FALSE, NA

P TRUE, FALSE, NA are special keywords; they are different from the character
strings "TRUE" , "FALSE" ,6 "NA"
» Don't worry about "NA" for now
typeof (TRUE)
#> [1] "logical"
typeof ("TRUE")
#> [1] "character"

typeof (c(TRUE,FALSE,NA))

#> [1] "logical"

typeof (¢ (TRUE,FALSE,NA, "FALSE"))
#> [1] "character”

log <- c(TRUE,TRUE,FALSE,NA,FALSE)
typeof (log)

#> [1] "logical”

length(log)

#> [1] 5

We'll learn more about logical vectors later

21/37

All elements in (atomic) vector must have same data type.

Atomic vectors are homogenous;

P An atomic vector has one data type
P> all elements within an atomic vector must have the same data “type”

If a vector contains elements of different type, the vector type will be type of the most
“complex” element

Atomic vector types from simplest to most complex:

P logical < integer < double < character

typeof (c (TRUE, TRUE,NA))

#> [1] "logical"

typeof (c(TRUE, TRUE,NA,1L)) # recall L after an integer forces type to be integer
#> [1] "integer"

typeof (c (TRUE, TRUE,NA,1.5))

#> [1] "double"

typeof (c (TRUE, TRUE,NA,1.5, "howdy!"))

#> [1] "character"

22/37

Named vectors

All vectors can be “named” (i.e., name individual elements within vector)

Example of creating an unamed vector

P the str() function “compactly display[s] the internal structure of an R object”
[from help file]; very useful for describing objects

#2str

x <- c(1,2,3,"hi!")

x

7> [tAT o0pe 0go opgpe
str(x)

#> chr [1:4] nqn o npn N Hpgfpn

Example of creating a named vector
y <- c(a=1,b=2,3,c="hi!")

y

#> a b @

#> mgn wgn ugw wpggn

str(y)

#> Named chr [14_7 nym o wgu mgu uwpign

#> - attr(*, "names")= chr [1:4] "a" "b" "" Uc"

23/37

Sequences
(Loose) definition: a sequence is a set of numbers in ascending or descending order

A vector containing a “sequence” of numbers (e.g., 1, 2, 3) can be created using the
colon operator : with the notation start:end
-5:5

#> [1] -5 -4 -3 -2-1 0 1 2 3 4 &
5:-5

[1] 5 4 3 2 1 0-1-2-3-4 -5
s<- 1:10 #same as this: s<- c(1:10)

s

#> [1] 1 2 3 4 5 6 7 8 9 10
length(s)

#> [1] 10

Creating sequences using seq() function

P basic syntax [with default values]:
seq(from = 1, to = 1, by = 1)

seq(10,15)

[1] 10 11 12 13 14 15
seq(from=10,to=15,by=1)

[1] 10 11 12 13 14 15
seq(from=100,to=150,by=10)

#> [1] 100 110 120 130 140 150

24/37

Vectorized math

Most mathematical operations operate on each element of the vector

P e.g., add a single value to a vector and that value will be added to each element
of the vector

1:3

[1] 1 23

1:3+.5

#> [1] 1.5 2.5 3.5

(1:3)*2

#> [1] 24 6

P e.g., for addition: add element 1 of vector 1 to element 1 of vector 2, add element
2 of vector 1 to element 2 of vector 2, etc.
c(1,1,1)+c(1,0,2)
#> [1] 21 3
c(1,1,1)%c(1,0,2)
#> [1] 1 0 2

25/37

Lists

26/37

Lists

What is a list?

P Like (atomic) vectors, a list is an object that contains elements
P Unlike vectors, data types can differ across elements within a list

P An element within a list can be another list
P> this characteristic makes lists more complicated than vectors
P> suitable for representing hierarchical data

Lists are more complicated than vectors; today we'll just provide a basic introduction

27/37

Create lists using list() function

Create a vector (for comparison purposes)
a <- c(1,2,3)

typeof (a)

[1] "double"

length(a)

#>

#>

Create a list

b <- 1list(1,2,3)
typeof (b)

[1] "list"
length(b)

#>

#>

b # print list is awkward

#>
#>
#>
#>
#>
#>
#>
#>

[1] 3

[1] 3

[[17]
[1] 1

[[2]]
[1] 2

[[311
[1] 3

28/37

Investigate structure of lists using str() function

When investigating lists, str()
b <- 1list(1,2,3)

typeof (b)

#> [1]
length(b)
#> [1] 3

str(b) # 3 elements, each element is a numeric vector w/ length=1

"1ist"

#> List of 3

#>
#>
#>

$
$ -
$

num 1
num 2
num 3

¢ <- list(c(3,4),c(-5,1,3))
typeof (c)

#> [1]
length(c)

#> [1] 2

"list"

is better than printing the list

str(c) # 2 elements; element 1=vector w/ length=2; element 2=vector w/length=3
#> List of 2

$: num [1:2] 3 4

#> $: num [1:3] -5 1 3

29/37

Elements within lists can have different data types

Lists are heterogeneous

P> data types can differ across elements within a list
b <- list(1,2,"apple")
typeof (b)

#> [1] "list"
length(b)

#> [1] 3

str(b)

#> List of 3

#> ¢ : num 1

% : num 2

#> $: chr "apple”

Vectors are homogeneous
a <- c(1,2,"apple")

typeof (a)
#> [1] "character"
str(a)

#> chr [1:3] "1" "2" "agpple”

30/37

Lists can contain other lists

x1 <- list(c(1,2), list("apple", "orange"), list(1, 2, 3))
typeof (x1)

#> [1] "list"

length(x1)

#> [1] 3

str(x1)

#> List of 3

#> $: num [1:2] 1 2

#> § :List of 2

#> ..$: chr "apple"
#> ..$: chr "orange"
#> § :List of 3

#> ..$: num 1

..% : num 2

#> .8 : num 3

Note that:

P> first element of list is a numeric vector with length=2
P second element is a list with length=2

P> first element is character vector with length=1

P> second element is character vector with length=1
P third element is with length=3

P> first element is numeric vector with length=1

P> second element is numeric vector with length=1

P> third element is numeric vector with length=1

31/37

You can name each element in the list

x2 <- list(a=c(1,2), b=list("apple", "orange"), c=list(1l, 2, 3))
str(x2)

#> List of 3

#> $ a: num [1:2] 1 2

#> $ b:List of 2

#> ..$: chr "apple"
#> ..$: chr "orange"
#> $ c:List of 3
.. $: num 1
..% : num 2
..$: num 3

names () function shows names of elements in the list

names (x2) # has names
#> [1] Hall ”b" IICII
names(x1) # no names
#> NULL

32/37

Access individual elements in a “named” list

Syntax: list_name$element_name

x2 <- list(a=1, b=list("apple", "orange"), c=list(1, 2, 3))
x2%a

#> [1] 1

typeof (x2$a)

#> [1] "double"

length(x2$a)

#> [1] 1

typeof (x2$b)
#> [1] "list"
length(x2$b)
#> [1] 2

typeof (x2$c)
#> [1] "list"
length(x2$c)
#> [1] 3

Note: We'll spend more time practicing “accessing elements of a list” in upcoming
weeks

33/37

Compare structure of list to structure of element within a list

str(x2)

#> List of 3

#> $ a: num 1

#> $ b:List of 2

#> ..$: chr "apple"
#> ..$: chr "orange"
#> § c:List of 3

#> .8 num 1

.8 : num 2

..$: num 3
str(x2$c)

#> List of 3

#> 8 : num 1
#> $: num 2
#> $: num 3

34/37

A dataset is just a list!

A data frame is a list with the following characteristics:

P Data type can differ across elements (like all lists)
P Each element in data frame must be a vector, not a list
P Each element (column) is a variable
P> Each element in a data frame must have the same length
P The length of an element is the number of observations (rows)
P so each variable in data frame must have same number of observations
P Each element is named
P> these element names are the variable names

names (df)

#> [1] Hmpg " /!cyl " Ilhp "

head(df, n=5) # print first 5 rows
#> # A tibble: 5 3

#> mpg cyl hp
#> <dbl> <dbl> <dbl>
#> 1 21 6 110
2 21 6 110
#> 3 22.8 4 93
#> 4 21.4 6 110
#> 5 18.7 8 175

Additionally, data frames have “attributes”; we'll discuss those in upcoming weeks

35/37

A data frame is a named list

df

#> # A tibble: 32 =z 3
#> mpg cyl hp
#> <dbl> <dbl> <dbl>
#> 1 21 6 110
2 21 6 110
#> 3 22.8 4 93
4 21.4 6 110
#> 5 18.7 8 175
#> 6 18.1 6 105
#> 7 14.3 8 245
#> 8 24.4 4 62
#> 9 22.8 4 95
#> 10 19.2 6 123
#> # ... with 22 more rows
typeof (df)

#> [1] "list"

names (df)

#> [1] llmpg " /Icyl n llhp "
length(df) # length=number of variables
#> [1] 3
str(df)
#> 'data. frame': 32 obs. of 3 wariables:
#> $ mpg: num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#> $ cyl: num 66 4 68684 46 ...
#> $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
36/37

Main takeaways about atomic vectors and lists

Basic data stuctures

1. (Atomic) vectors: logical, integer, double, character.
P cach element in vector must have same data type

2. Lists:
P Data type can differ across elements

Takeaways

P> These concepts are difficult; ok to feel confused
P> | will reinforce these concepts throughout the course
P Good practice: run simple diagnostics on any new object
4 length() : how many elements in the object
P typeof () : what type of data is the object
P str() : hierarchical structure of the object
P> These data structures (vectors, lists) and data types (e.g., character, numeric,

logical) are the basic building blocks of all object oriented programming languages
P> Application to statistical analysis
Datasets are just lists
P The individual elements — columns/variables — within a dataset are just vectors
P> These structures and data types are foundational for all “data science”
applications
P e.g., mapping, webscraping, network analysis, etc.

37/31

	R basics
	Classification of objects
	Atomic vectors
	Lists

